Log in

Structural Characteristics and Electric and Magnetic Features of the Nd2.68Sr1.32Mn1.2Ti1.32Fe1.48O12 Ferromagnetic Semiconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The inclusion of several cations in the A and B crystallographic sites of the A4-xA′xB4-y-zB′yB′′zO12 complex perovskite gives rise to diverse physical properties, depending on the constituent elements of the material. In this work, structural, morphological, compositional, magnetic and electric characterization of the solid-reacted compound Nd2.68Sr1.32Mn1.2Ti1.32Fe1.48O12 is reported. Rietveld analysis of X-ray diffraction data revealed that this material crystallizes in an orthorhombic perovskite structure (Pnma, #62, space group). The surface morphologic study showed the formation of polycrystalline material with diverse shape of grains of 1.50 μm mean size. Compositional characterization through the energy-dispersive X-ray spectroscopy technique suggests that there are no other elements in the material besides the expected Nd, Sr, Mn, Ti, Fe and O, which are present in percentage proportions very close to the expected values from the material stoichiometry. E–J curves exhibit hysteretic features which are typical of the thermistor-like materials. Electric resistivity as a function of temperature showed an Arrhenius behavior also observed in doped semiconductors. Diffuse reflectance spectra revealed an optical band gap of 1.17 eV. Magnetic susceptibility measurements as a function of temperature evidenced a ferrimagnetic response, and hysteretic curves of magnetization at T = 50 K, 200 K and 300 K corroborated the occurrence of magnetic ordering, which permit to classify this material as a ferrimagnetic semiconductor with potential applicability in the spintronic device industry at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S.N. Piramanayagam, Mater. Today 20, 530 (2001)

    Article  Google Scholar 

  2. E.L. Nagaev, Phys. Rep. 346, 387 (2001)

    Article  ADS  Google Scholar 

  3. B. Raveau, A. Maignan, C. Martin, M. Hervieu, Chem. Mater. 10, 2641 (1998)

    Article  Google Scholar 

  4. C.J. Howard, B.J. Kennedy, P.M. Woodward, Acta Cryst. B 59, 463 (2003)

    Article  Google Scholar 

  5. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, Mater. Character. 99, 128 (2015)

    Article  Google Scholar 

  6. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, J. All. Compnd. 516, 179 (2012)

    Article  Google Scholar 

  7. Y. Shimakawa, Inorg. Chem. 47, 8562 (2008)

    Article  Google Scholar 

  8. J.A. Cuervo Farfán, C.A. Parra Vargas, D.S.F. Viana, F.P. Milton, D. Garcia, D.A. Landínez Téllez, J. Roa-Rojas, J. Mater. Sci.: Mater. Electron. 29, 20942 (2018)

    Google Scholar 

  9. D.P. Llamosa, D.A. Landínez Téllez, J. Roa-Rojas, Phys. B.: Cond. Mat. 404, 2726 (2009)

    Article  ADS  Google Scholar 

  10. S.J. Yuan, W. Ren, F. Hong, Y.B. Wang, J.C. Zhang, L. Bellaiche, S.X. Cao, G. Cao, Phys. Rev. B 87, 184405 (2013)

    Article  ADS  Google Scholar 

  11. K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)

    Article  ADS  Google Scholar 

  12. L.C. Moreno, J.S. Valencia, D.A. Landínez Téllez, J. Arbey Rodríguez, M.L. Martínez, J. Roa-Rojas, F. Fajardo, J. Magn. Magn. Mater. 320, 19 (2008)

    Article  Google Scholar 

  13. T. Chatterji, P.F. Henry, B. Ouladdiaf, Phys. Rev. B 77, 212403 (2008)

    Article  ADS  Google Scholar 

  14. P.E. Tomaszewski, N. Miniajluk, M. Zawadzki, J. Trawczyński, Phase Transit. 92, 525 (2019)

    Article  Google Scholar 

  15. H.E. Weaver, J. Phys. Chem. Solids 11, 274 (1959)

    Article  ADS  Google Scholar 

  16. K.M. Ginell, C. Horn, R.B. Von Dreele, B.H. Toby, Powder Diffr. 34, 184 (2019)

    Article  ADS  Google Scholar 

  17. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, (1993) TYPIX Standardized and crystal chemical characterization of inorganic structure types. In: Gmelein Handbook of Inorganic and Organometallic Chemistry 8th ed. Springer, Berlin.

  18. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  Google Scholar 

  19. G. Blatter, F. Greuter, Phys. Rev. B 33, 3952 (1986)

    Article  ADS  Google Scholar 

  20. H. Bidadi, S. Hasanli, M. Hekmatshoar, S. Bidadi, S. Mohammadi Aref, Vacuum 84, 1232 (2010)

    Article  ADS  Google Scholar 

  21. A. Vojta, Q. Wen, D.R. Clarke, Comp. Mater. Sci. 6, 51 (1996)

    Article  Google Scholar 

  22. R.K. Pandey, W.A. Stapleton, I. Sutanto, J. Electron. Device. Soc. 3, 273 (2015)

    Google Scholar 

  23. M. Matsuoka, Japan. J. Appl. Phys. 10, 736 (1971)

    Article  Google Scholar 

  24. A. Zed, S.J. Milne, J. Mater. Sci. Mater. Electron. 26, 9243 (2015)

    Article  Google Scholar 

  25. J. Singh, Semiconductor Physics and Its Heterostructures. Mcgraw Hill Series in Electrical and Computer Engineering, New York, (1993).

  26. P.V.E. McClintock, D.J. Meredith, J.K. Wigmore. Matter at Low Temperatures. Blackie. 1984 ISBN 0-216-91594-5.

  27. M. Affronte, M. Campani, S. Piccinini, M. Tamborin, B. Morten, M. Prudenziati, J. Low Temp. Phys. 109, 461 (1997)

    Article  ADS  Google Scholar 

  28. A.L. Efros, B.I. Shklovskii, J. Phys. C: Sol. Stat. Phys. 8, L49 (1975)

    Article  ADS  Google Scholar 

  29. S. Kurth, M.A.L. Marques, E.K.U. Gross, in Encyclopedia of Condensed Matter Physics, Ed. by F. Bassani, J. Liedl, P. Wyder, (Elsevier, Amsterdam, 2005), pp. 395–402

  30. J.A. Cuervo Farfán, D.M. Aljure García, R. Cardona, J. Arbey Rodríguez, D.A. Landínez Téllez, J. Roa-Rojas, J. Low Temp. Phys. 186, 295 (2017)

    Article  ADS  Google Scholar 

  31. M. Sorescu, T. Xu, A. Hannan, J. Mater. Sci. Technol. 1, 57 (2011)

    Google Scholar 

  32. V. Kumar, S. Kr Sharma, T.P. Sharma, V. Singh, Opt. Mater. 12, 115 (1999)

    Article  ADS  Google Scholar 

  33. K. Toprasertpong, H. Fujii, T. Thomas, M. Führer, D. Alonso-Álvarez, D.J. Farrell, K. Watanabe, Y. Okada, N.J. Ekins-Daukes, M. Sugiyama, Y. Nakano, Prog. Photovolt. Res. Appl. 24, 533 (2016)

    Article  Google Scholar 

  34. M. Hossain, W. Ma, S. Qarony, L. Zeng, D. Knipp, Y.H. Tsang, Nano-Micro. Lett. 11, 58 (2019)

    Article  ADS  Google Scholar 

  35. R.L. Falge Jr., N.M. Wolcott, J. Low Temp. Phys. 5, 617 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Division of Investigation and Extension (DIEB) of the National University of Colombia and MINCIENCIAS, on the project FP80740-243-2019. First author, J.A Cuervo Farfán, received support by MINCIENCIAS on the scholarship program for national Ph.D. students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farfán, J.A.C., Lara, J.P.B., Vargas, C.A.P. et al. Structural Characteristics and Electric and Magnetic Features of the Nd2.68Sr1.32Mn1.2Ti1.32Fe1.48O12 Ferromagnetic Semiconductor. J Low Temp Phys 202, 128–144 (2021). https://doi.org/10.1007/s10909-020-02529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02529-9

Keywords

Navigation