Log in

A review of functional E-jet inks for manufacturing flexible sensors

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In preparing flexible sensors, electrohydrodynamic inkjet printing technology is a commonly used method to print and pattern functional inks uniformly with high precision. This paper reviews the latest research results of functional inks for manufacturing flexible sensors using electrohydrodynamic inkjet printing (E-jet) technology. Firstly, the functional inks are categorized into metal nanomaterial inks, carbon material series inks, and organic polymer inks, as well as ceramic nanoparticle inks and metal oxide inks, and the processing of these functional inks in the fabrication of flexible sensors is discussed in detail, while the advantages and limitations of different types of functional inks are compared. Finally, the challenges facing the printing and manufacturing of flexible sensors by E-jet technology are discussed, and the future development prospects are envisioned to promote the further development and application of flexible sensors manufactured by E-jet technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Source: Reproduced with permission from reference [38] (Zou et al. 2021) by Applied Surface Science.

Figure 2

Source: Reproduced with permission from reference [77] (Ma et al. 2023) by Advanced Materials Technologies.

Figure 3

Source: Reproduced with permission from reference [100] (Jiang et al. 2020) by Procedia Manufacturing.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W (2022) Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small 18:2103734. https://doi.org/10.1002/smll.202103734

    Article  CAS  Google Scholar 

  2. Liu Z, Liang J, Su S, Zhang C, Li J, Yang M, Cao S, Zhou H, Zhao K, Wang D (2021) Preparation of defect-free alumina insulation film using layer-by-layer electrohydrodynamic jet deposition for high temperature applications. Ceram Int 47:14498–14505. https://doi.org/10.1016/j.ceramint.2021.02.029

    Article  CAS  Google Scholar 

  3. Guan H, Yang R, Li W, Tao Y, Chen C, Tai H, Su Y, Wang Y, Jiang Y, Li W (2023) Self-powered multifunctional flexible sensor for wearable biomonitoring. Sens Actuators B Chem 377:132996. https://doi.org/10.1016/j.snb.2022.132996

    Article  CAS  Google Scholar 

  4. Feng Y, Liu H, Zhu W, Guan L, Yang X, Zvyagin AV, Zhao Y, Shen C, Yang B, Lin Q (2021) Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv Func Mater 31:2105264. https://doi.org/10.1002/adfm.202105264

    Article  CAS  Google Scholar 

  5. Ma M, Sun R, Li S, Kang H, Wang S, Chu F, Sun J (2023) Fabricating of double layered flexible pressure sensor with a high-sensitivity based on inkjet printed micro-concave structure. Sens Actuators A 351:114161. https://doi.org/10.1016/j.sna.2023.114161

    Article  CAS  Google Scholar 

  6. Zeeshan Yousaf HM, Kim SW, Hassan G, Karimov K, Choi KH, Sajid M (2020) Highly sensitive wide range linear integrated temperature compensated humidity sensors fabricated using Electrohydrodynamic printing and electrospray deposition. Sens Actuators B Chem 308:127680. https://doi.org/10.1016/j.snb.2020.127680

    Article  CAS  Google Scholar 

  7. Abdel-Karim R, Reda Y, Abdel-Fattah A (2020) Review—Nanostructured materials-based nanosensors. J Electrochem Soc 167:037554. https://doi.org/10.1149/1945-7111/ab67aa

    Article  CAS  Google Scholar 

  8. Maddipatla D, Narakathu BB, Atashbar M (2020) Recent progress in manufacturing techniques of printed and flexible sensors: a review. Biosensors 10:199. https://doi.org/10.3390/bios10120199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu Y, Wang H, Ye D, Yang R, Huang Y, Miao X (2022) Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron. IEEE Electron Device Lett 43:116–119. https://doi.org/10.1109/LED.2021.3129202

    Article  CAS  Google Scholar 

  10. Wu Y, Ma Y, Zheng H, Ramakrishna S (2021) Piezoelectric materials for flexible and wearable electronics: a review. Mater Des 211:110164. https://doi.org/10.1016/j.matdes.2021.110164

    Article  CAS  Google Scholar 

  11. Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT (2021) Flexible wearable sensors for cardiovascular health monitoring. Adv Healthc Mater 10:2100116. https://doi.org/10.1002/adhm.202100116

    Article  CAS  Google Scholar 

  12. Yue H, Yuan L, Zhang W, Zhang S, Wei W, Ma G (2018) Macrophage responses to the physical burden of cell-sized particles. J Mater Chem B 6:393–400. https://doi.org/10.1039/C7TB01673E

    Article  CAS  PubMed  Google Scholar 

  13. Qin J, Yin L, Hao Y, Zhong S, Zhang D, Bi K, Zhang Y, Zhao Y, Dang Z (2021) Flexible and stretchable capacitive sensors with different microstructures. Adv Mater 33:2008267. https://doi.org/10.1002/adma.202008267

    Article  CAS  Google Scholar 

  14. Thouti E, Nagaraju A, Chandran A, Prakash PVBSS, Shivanarayanamurthy P, Lal B, Kumar P, Kothari P, Panwar D (2020) Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring. Sens Actuators A 314:112251. https://doi.org/10.1016/j.sna.2020.112251

    Article  CAS  Google Scholar 

  15. Qu C, Wang S, Liu L, Bai Y, Li L, Sun F, Hao M, Li T, Lu Q, Li L, Qin S, Zhang T (2019) Bioinspired flexible volatile organic compounds sensor based on dynamic surface wrinkling with dual-signal response. Small 15(17):1900216. https://doi.org/10.1002/smll.201900216

    Article  CAS  Google Scholar 

  16. **ong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong CP (2020) A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70:104436. https://doi.org/10.1016/j.nanoen.2019.104436

    Article  CAS  Google Scholar 

  17. Tang R, Lu F, Liu L, Yan Y, Du Q, Zhang B, Zhou T, Fu H (2021) Flexible pressure sensors with microstructures. Nano Select 2:1874–1901. https://doi.org/10.1002/nano.202100003

    Article  CAS  Google Scholar 

  18. Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL (2020) Nanomaterial patterning in 3D printing. Adv Mater 32:1907142. https://doi.org/10.1002/adma.201907142

    Article  CAS  Google Scholar 

  19. Xu J, Wang X, Wang C, Yuan L, Chen W, Bao J, Su Q, Xu Z, Wang C, Wang Z, Shan D, Guo B (2021) A review on micro/nanoforming to fabricate 3d metallic structures. Adv Mater 33:2000893. https://doi.org/10.1002/adma.202000893

    Article  CAS  Google Scholar 

  20. Park JU, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789. https://doi.org/10.1038/nmat1974

    Article  CAS  PubMed  Google Scholar 

  21. Khan A, Rahman K, Ali S, Khan S, Wang B, Bermak A (2021) Fabrication of circuits by multi-nozzle electrohydrodynamic inkjet printing for soft wearable electronics. J Mater Res 1:1–11. https://doi.org/10.1557/s43578-021-00188-4

    Article  CAS  Google Scholar 

  22. Liang H, Yao R, Zhang G, Zhang X, Liang Z, Yang Y, Ning H, Zhong J, Qiu T, Peng J (2022) A strategy toward realizing narrow line with high electrical conductivity by electrohydrodynamic printing. Membranes 12:141. https://doi.org/10.3390/membranes12020141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guan Y, Wu S, Wang M, Tian Y, Lai W, Huang Y (2022) Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages. Phys Fluids 34:062005. https://doi.org/10.1063/5.0094537

    Article  CAS  Google Scholar 

  24. Esa Z, Abid M, Zaini JH, Aissa B, Nauman MM (2022) Advancements and applications of electrohydrodynamic printing in modern microelectronic devices: a comprehensive review. Appl Phys A 128:780. https://doi.org/10.1007/s00339-022-05796-3

    Article  CAS  Google Scholar 

  25. Das R, Roy SS (2021) Selection of suitable control parameters for proper high-resolution deposition performance of E-jet microfabrication process: a comparative analysis. In: Handbook of research on advancements in manufacturing, materials, and mechanical engineering, IGI Global. pp 193–214. https://doi.org/10.4018/978-1-7998-4939-1.ch009

  26. Das R, Ball AK, Roy SS, Murmu NC (2020) A multi-criteria decision-making approach for process improvement of e-jet: an experimental investigation. J Adv Manuf Syst 19(03):463–497. https://doi.org/10.1142/S0219686720500237

    Article  Google Scholar 

  27. Wang X, Zhang M, Zhang L, Xu J, **ao X, Zhang X (2022) Inkjet-printed flexible sensors: from function materials, manufacture process, and applications perspective. Mater Today Commun 31:103263. https://doi.org/10.1016/j.mtcomm.2022.103263

    Article  CAS  Google Scholar 

  28. Sato S, Nishida K, Hirai T, Ito M, Teramae H, Matsubara M, Kanie K, Ohnishi N (2022) Fabrication and performance evaluation of full-inkjet-printed dielectric-barrier-discharge plasma actuators. Sens Actuators A 344:113751. https://doi.org/10.1016/j.sna.2022.113751

    Article  CAS  Google Scholar 

  29. Mu B, Xu Y, Xu J, Nikitina MA, Zafari U, **ao X (2022) Inkjet direct printing approach for flexible electronic. Results Eng 14:100466. https://doi.org/10.1016/j.rineng.2022.100466

    Article  CAS  Google Scholar 

  30. Jiao T, Lian Q, Zhao T, Wang H (2021) Influence of I nk properties and voltage parameters on piezoelectric inkjet droplet formation. Appl Phys A 127:11. https://doi.org/10.1007/s00339-020-04151-8

    Article  CAS  Google Scholar 

  31. Mondal K, McMurtrey MD (2020) Present status of the functional advanced micro-, nano-printings—a mini review. Mater Today Chem 17:100328. https://doi.org/10.1016/j.mtchem.2020.100328

    Article  CAS  Google Scholar 

  32. Spiegel IA, van de Laar T, Oomen T, Barton KA (2020) Control-oriented dynamical model of deposited droplet volume in electrohydrodynamic jet printing. Am Soc Mech Eng. https://doi.org/10.1115/DSCC2020-3238

    Article  Google Scholar 

  33. Rehmani MAA, Arif KM (2021) High resolution electrohydrodynamic printing of conductive ink with an aligned aperture coaxial printhead. Int J Adv Manuf Technol 115:2785–2800. https://doi.org/10.1007/s00170-021-07075-6

    Article  Google Scholar 

  34. Wang D, Abbas Z, Du Z, Du Z, Lu L, Zhao K, Zhao X, Yuan Y, Zong H, Cui Y, Suo L, Liang J (2022) Phase field simulation of electrohydrodynamic jet droplets and printing microstructures on insulating substrates. Microelectron Eng 261:111817. https://doi.org/10.1016/j.mee.2022.111817

    Article  CAS  Google Scholar 

  35. Paul A, Shekhar Roy S (2022) Numerical simulation to predict printed width in EHD inkjet 3D printing process. In: Materials today: Proceedings, vol 62, pp 373–379. https://doi.org/10.1016/j.matpr.2022.03.695

  36. Abbas Z, Wang D, Du Z, Zhao K, Du Z, Lu L, Cui Y, Liang J (2021) Numerical simulation of stable electrohydrodynamic cone-jet formation and printing on flexible substrate. Microelectron Eng 237:111496. https://doi.org/10.1016/j.mee.2020.111496

    Article  CAS  Google Scholar 

  37. Ball AK, Das R, Roy SS, Kisku DR, Murmu NC (2020) Modeling of EHD inkjet printing performance using soft computing-based approaches. Soft Comput 24:571–589. https://doi.org/10.1007/s00500-019-04202-0

    Article  Google Scholar 

  38. Zou W, Yu H, Zhou P, Zhong Y, Wang Y, Liu L (2021) High-resolution additive direct writing of metal micro/nanostructures by electrohydrodynamic jet printing. Appl Surf Sci 543:148800. https://doi.org/10.1016/j.apsusc.2020.148800

    Article  CAS  Google Scholar 

  39. Yin L, Lv J, Wang J (2020) Structural innovations in printed, flexible, and stretchable electronics. Adv Mater Technol 5:2000694. https://doi.org/10.1002/admt.202000694

    Article  Google Scholar 

  40. Hu Y, Su S, Liang J, **n W, Li X, Wang D (2020) Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing. Nanotechnology 32:105301. https://doi.org/10.1088/1361-6528/abccec

    Article  CAS  Google Scholar 

  41. Afkhami Z, Iezzi B, Hoelzle D, Shtein M, Barton K (2020) Electrohydrodynamic jet printing of one-dimensional photonic crystals: part I—an empirical model for multi-material multi-layer fabrication. Adv Mater Technol 5:2000386. https://doi.org/10.1002/admt.202000386

    Article  CAS  Google Scholar 

  42. Yan K, Li J, Pan L, Shi Y (2020) Inkjet printing for flexible and wearable electronics. APL Mater 8:120705. https://doi.org/10.1063/5.0031669

    Article  CAS  Google Scholar 

  43. Liu Y, Zhu H, **ng L, Bu Q, Ren D, Sun B (2023) Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 15:6025–6051. https://doi.org/10.1039/D2NR05649F

    Article  CAS  PubMed  Google Scholar 

  44. Chen M, Lee H, Yang J, Xu Z, Huang N, Chan BP, Kim JT (2020) Parallel, multi-material electrohydrodynamic 3d nanoprinting. Small 16:1906402. https://doi.org/10.1002/smll.201906402

    Article  CAS  Google Scholar 

  45. Wang D, Abbas Z, Lu L, Liang S, Zhao X, Xu P, Zhao K, Suo L, Cui Y, Yin P, Tang B, **e J, Yang Y, Liang J (2022) Simulation of cone-jet and micro-drip regimes and printing of micro-scale patterns on PET substrate. Polymers 14:2683. https://doi.org/10.3390/polym14132683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Su S, Liang J, Wang Z, **n W, Li X, Wang D (2020) Microtip focused electrohydrodynamic jet printing with nanoscale resolution. Nanoscale 12:24450–24462. https://doi.org/10.1039/D0NR08236H

    Article  CAS  PubMed  Google Scholar 

  47. Farjam N (2022) High-fidelity modeling and validation of electrohydrodynamic jet printing. Materialia 26:101578. https://doi.org/10.1016/j.mtla.2022.101578

    Article  Google Scholar 

  48. Xu L, Qi L, Li K, Zou H (2023) Fabrication of a polymer nano nozzle for electrohydrodynamic small-molecule solvent inkjet printing. ACS Appl Nano Mater 6:3046–3053. https://doi.org/10.1021/acsanm.2c05484

    Article  CAS  Google Scholar 

  49. Wang K, Wang H, Zhou X, Yang S (2021) Working parameter optimization of a microstructure electrohydrodynamic jet printing system by the quantification of margins and uncertainties. In: 2021 3rd International conference on intelligent control, measurement and signal processing and intelligent oil field (ICMSP), pp 134–140. https://doi.org/10.1109/ICMSP53480.2021.9513388

  50. Wang Q, Zhang G, Zhang H, Duan Y, Yin Z, Huang Y (2021) High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Func Mater 31:2100857. https://doi.org/10.1002/adfm.202100857

    Article  CAS  Google Scholar 

  51. Cho TH, Farjam N, Allemang CR, Pannier CP, Kazyak E, Huber C, Rose M, Trejo O, Peterson RL, Barton K, Dasgupta NP (2020) Area-selective atomic layer deposition patterned by electrohydrodynamic jet printing for additive manufacturing of functional materials and devices. ACS Nano 14:17262–17272. https://doi.org/10.1021/acsnano.0c07297

    Article  CAS  PubMed  Google Scholar 

  52. Abbas Z, Wang D, Lu L, Du Z, Zhao X, Zhao K, Si M, Yin P, Zhang X, Cui Y, Liang J (2022) The focused electrode ring for electrohydrodynamic jet and printing on insulated substrate. Int J Precis Eng Manuf 23:545–563. https://doi.org/10.1007/s12541-022-00634-1

    Article  Google Scholar 

  53. Mohammadi S, Haeri M (2022) Nested saturated feedback control of an electrohydrodynamic jet printer. e-Prime-Adv Electr Eng Electron Energy 2:100037. https://doi.org/10.1016/j.prime.2022.100037

    Article  Google Scholar 

  54. Abbasi Shirsavar M, Taghavimehr M, Ouedraogo LJ, Javaheripi M, Hashemi NN, Koushanfar F, Montazami R (2022) Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics. Biosens Bioelectron 212:114418. https://doi.org/10.1016/j.bios.2022.114418

    Article  CAS  PubMed  Google Scholar 

  55. Shirsavar MA, Taghavimehr M, Ouedraogo LJ, Javaheripi M, Hashemi NN, Koushanfar F, Montazami R (2021) Machine learning-assisted E-jet printing of organic flexible biosensors. ar**v preprint, ar**v:2111.03985 . https://doi.org/10.48550/ar**v.2111.03985

  56. Liu Q, Tian B, Liang J, Wu W (2021) Recent advances in printed flexible heaters for portable and wearable thermal management. Mater Horiz 8:1634–1656. https://doi.org/10.1039/D0MH01950J

    Article  CAS  PubMed  Google Scholar 

  57. Biswas A, Nath A, Roy SS (2022) An adaptive neural-fuzzy approach for modeling of droplet frequency in E-jet-based micro-additive manufacturing. In: Recent advances in manufacturing modelling and optimization: select proceedings of RAM 2021, pp 159–169. https://doi.org/10.1007/978-981-16

  58. Li X, Liang J, **ao J, Su S, Zhu L, Sun L, Gao L, Wang H, Yin P, Chen L, Wang D (2023) Substrate-independent electrohydrodynamic jet printing with dual-ring electrostatic focusing structure. Adv Mater Technol 8:2201842. https://doi.org/10.1002/admt.202201842

    Article  CAS  Google Scholar 

  59. Zhou H, Song Y (2022) Fabrication of electronics by electrohydrodynamic jet printing. Adv Electron Materials 8:2200728. https://doi.org/10.1002/aelm.202200728

    Article  CAS  Google Scholar 

  60. Hawa A, Bahrami A, Barton K (2023) The effect of voltage on the initiation of natural pulsation in electrohydrodynamic jet printing. In: International manufacturing science and engineering conference. American society of mechanical engineers, vol 87233: V001T01A009 . https://doi.org/10.1115/MSEC2023-103321

  61. Bahrami A, Hawa A, Yue K, Barton K (2023) Dimensionless analysis of the transition from continuous jet mode to natural pulsation in electrohydrodynamic jet printing. In: 2023 IEEE Conference on control technology and applications (CCTA), pp 143–149. https://doi.org/10.1109/CCTA54093.2023.10252374

  62. Farjam N, Spiegel IA, Barton K (2021) A high-fidelity modeling framework for near-field electrohydrodynamic jet printing. IFAC-PapersOnLine 54:475–481. https://doi.org/10.1016/j.ifacol.2021.11.218

    Article  Google Scholar 

  63. Ahn JH, Choi JH, Lee CY (2020) Electrical evaluations of anisotropic conductive film manufactured by electrohydrodynamic ink jet printing technology. Org Electron 78:105561. https://doi.org/10.1016/j.orgel.2019.105561

    Article  CAS  Google Scholar 

  64. Guo W, Hu J, Yan X (2023) Control of UV-curing ink splashing and line quality during dc-pulse-modulated electrohydrodynamic printing for textile-based electronics. ACS Sustain Chem Eng 11(14):5748–5755. https://doi.org/10.1021/acssuschemeng.3c00323

    Article  CAS  Google Scholar 

  65. Kim S, Lee SE, Kim BH (2022) Micropattern arrays of polymers/quantum dots formed by electrohydrodynamic jet (e-jet) printing. J Korean Inst Electr Electron Mater Eng 35:18–23. https://doi.org/10.4313/JKEM.2022.35.1.3

    Article  Google Scholar 

  66. Pekdemir S, Torun I, Sakir M, Ruzi M, Rogers JA, Onses MS (2020) Chemical funneling of colloidal gold nanoparticles on printed arrays of end-grafted polymers for plasmonic applications. ACS Nano 14(7):8276–8286. https://doi.org/10.1021/acsnano.0c01987

    Article  CAS  PubMed  Google Scholar 

  67. Li H (2022) Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing. Opt Laser Technol 148:107717. https://doi.org/10.1016/j.optlastec.2021.107717

    Article  CAS  Google Scholar 

  68. Zhang J, Geng B, Duan S, Huang C, ** Y, Mu Q, Chen H, Ren X, Hu W (2020) High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. J Mater Chem C 8(43):15219–15223. https://doi.org/10.1039/D0TC02508A

    Article  CAS  Google Scholar 

  69. Wang Z, Zhang G, Huang H, Qian L, Liu X, Lan H (2021) The self-induced electric-field-driven jet printing for fabricating ultrafine silver grid transparent electrode. Virtual Phys Prototyp 16:113–123. https://doi.org/10.1080/17452759.2020.1823116

    Article  Google Scholar 

  70. Saba MH, Mukherjee S, Dutta S, Mallisetty PK, Murmu NC (2021) Electrohydrodynamic jet printing for desired print diameter In: Materials today: Proceedings, vol 46, pp 1749–1754. https://doi.org/10.1016/j.matpr.2020.07.570

  71. Zhang X, Jiang X, Zhang Z, Qin H (2021) Fabrication of silver microstructures via electrohydrodynamic inkjet printing as customizable X-ray marker in bio-structure for biomedical diagnostic imaging. Int J Adv Manuf Technol 114:241–250. https://doi.org/10.1007/s00170-021-06858-1

    Article  Google Scholar 

  72. Shariq M, Chattopadhyaya S, Rudolf R, Rai Dixit A (2020) Characterization of AuNPs based ink for inkjet printing of low cost paper based sensors. Mater Lett 264:127332. https://doi.org/10.1016/j.matlet.2020.127332

    Article  CAS  Google Scholar 

  73. Wang YH, Du DX, **e H, Zhang XB, Lin KW, Wang K, Fu E (2021) Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing. J Mater Sci: Mater Electron 32:496–508. https://doi.org/10.1007/s10854-020-04828-z

    Article  CAS  Google Scholar 

  74. Huang Q, Zhu Y (2021) Patterning of metal nanowire networks: methods and applications. ACS Appl Mater Interfaces 13:60736–60762. https://doi.org/10.1021/acsami.1c14816

    Article  CAS  PubMed  Google Scholar 

  75. Im B, Lee SK, Kang G, Moon J, Byun D, Cho DH (2022) Electrohydrodynamic jet printed silver-grid electrode for transparent raindrop energy-based triboelectric nanogenerator. Nano Energy 95:107049. https://doi.org/10.1016/j.nanoen.2022.107049

    Article  CAS  Google Scholar 

  76. Khan A, Ali S, Khan S, Bermak A (2021) Rapid fabrication of soft strain sensors by multi-nozzle electrohydrodynamic inkjet printing for wearable electronics. In: 2021 IEEE International symposium on circuits and systems (ISCAS), pp 1–4. https://doi.org/10.1109/ISCAS51556.2021.9401105

  77. Ma J, Feng J, Zhang H, Hu X, Wen J, Wang S, Tian Y (2023) Electrohydrodynamic printing of ultrafine and highly conductive ag electrodes for various flexible electronics. Adv Mater Technol 8:2300080. https://doi.org/10.1002/admt.202300080

    Article  CAS  Google Scholar 

  78. Zhou P, Yu H, Zou W, Wang Z, Liu L (2019) High-resolution and controllable nanodeposition pattern of ag nanoparticles by electrohydrodynamic jet printing combined with coffee ring effect. Adv Mater Interfaces 6:1900912. https://doi.org/10.1002/admi.201900912

    Article  CAS  Google Scholar 

  79. Huang Y, Jiang L, Li B, Premaratne P, Jiang S, Qin H (2020) Study effects of particle size in metal nanoink for electrohydrodynamic inkjet printing through analysis of droplet impact behaviors. J Manuf Process 56:1270–1276. https://doi.org/10.1016/j.jmapro.2020.04.021

    Article  Google Scholar 

  80. Wang P, Barnes B, Huang Z, Wang Z, Zheng M, Wang Y (2021) Beyond color: the new carbon ink. Adv Mater 33(46):2005890. https://doi.org/10.1002/adma.202005890

    Article  CAS  Google Scholar 

  81. Yi J, Babick F, Strobel C, Rosset S, Ciarella L, Borin D, Wilson K, Andreas L, Richter A, Henke EFM (2023) Characterizations and inkjet printing of carbon black electrodes for dielectric elastomer actuators. ACS Appl Mater Interfaces 15(35):41992–42003. https://doi.org/10.1021/acsami.3c05444

    Article  CAS  PubMed  Google Scholar 

  82. Tang X, Girma HG, Li Z, Hong J, Lim B, Jung SH, Kim Y, Nam SY, Kim K, Kong H, Kim SH (2021) “Dragging mode” electrohydrodynamic jet printing of polymer-wrapped semiconducting single-walled carbon nanotubes for NO gas-sensing field-effect transistors. J Mater Chem C 9:15804–15812. https://doi.org/10.1039/D1TC04638A

    Article  CAS  Google Scholar 

  83. Zhou P, Yu H, Zou W, Zhong Y, Wang X, Wang Z, Liu L (2020) Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing. Opt Express 28:6336–6349. https://doi.org/10.1364/OE.383863

    Article  PubMed  Google Scholar 

  84. Li X, Go M, Lim S, An TK, Jeong YJ, Kim SH (2019) Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors. Org Electron 73:279–285. https://doi.org/10.1016/j.orgel.2019.06.023

    Article  CAS  Google Scholar 

  85. Lee KH, Lee SS, Ahn DB, Lee J, Byun D, Lee SY (2020) Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci Adv. https://doi.org/10.1126/sciadv.aaz1692

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao B, Sivasankar VS, Subudhi SK, Sinha S, Dasgupta A, Das S (2022) Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. Nanoscale 14:14858–14894. https://doi.org/10.1039/D1NR04912G

    Article  CAS  PubMed  Google Scholar 

  87. Zhang P, Su J, Guo J, Hu S (2023) Influence of carbon nanotube on properties of concrete: a review. Constr Build Mater 369:130388. https://doi.org/10.1016/j.conbuildmat.2023.130388

    Article  CAS  Google Scholar 

  88. Bi P, Zhang M, Li S, Lu H, Wang H, Liang X, Liang H, Zhang Y (2023) Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res 16:4093–4099. https://doi.org/10.1007/s12274-022-5162-0

    Article  CAS  Google Scholar 

  89. Zhang L, Wu T, Song H, Tang C, Yu Z (2023) Multi-field coupling parameter regulation model of flexible circuit pattern using near-field electrohydrodynamic direct-writing method. Int J Adv Manuf Technol 124:1129–1139. https://doi.org/10.1007/s00170-022-10287-z

    Article  Google Scholar 

  90. Wilkinson NJ, Kay RW, Harris RA (2020) Electrohydrodynamic and aerosol jet printing for the copatterning of polydimethylsiloxane and graphene platelet inks. Adv Mater Technol 5(6):2000148. https://doi.org/10.1002/admt.202000148

    Article  CAS  Google Scholar 

  91. Zhong J, Fang Z, Luo D, Ning H, Qiu T, Li M, Yang Y, Fu X, Yao R, Peng J (2023) Effect of surface treatment on performance and internal stacking mode of electrohydrodynamic printed graphene and its microsupercapacitor. ACS Appl Mater Interfaces 15(2):3621–3632. https://doi.org/10.1021/acsami.2c18367

    Article  CAS  PubMed  Google Scholar 

  92. Zhao K, Wang D, Li K, Jiang C, Wei Y, Qian J, Feng L, Du Z, Xu Z, Liang J (2020) Drop-on-demand electrohydrodynamic jet printing of graphene and its composite microelectrode for high performance electrochemical sensing. J Electrochem Soc 167(10):107508. https://doi.org/10.1149/1945-7111/ab9c7e

    Article  CAS  Google Scholar 

  93. Lim H, Kim HS, Qazi R, Kwon Y, Jeong J, Yeo W (2020) Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 32:1901924. https://doi.org/10.1002/adma.201901924

    Article  CAS  Google Scholar 

  94. Wu Y, Zeng Y, Chen Y, Li C, Qiu R, Liu W (2021) Photocurable 3D printing of high toughness and self-healing hydrogels for customized wearable flexible sensors. Adv Func Mater 31:2107202. https://doi.org/10.1002/adfm.202107202

    Article  CAS  Google Scholar 

  95. Li K, Zhao Y, Liu M, Wang X, Zhang F, Wang D (2021) A multi-scale E-jet 3D printing regulated by structured multi-physics field. J Micromech Microeng 32:025005. https://doi.org/10.1088/1361-6439/ac43d1

    Article  Google Scholar 

  96. Liu C, Pandit PP, Li Y, Cong W, Hu Y (2023) Insights into the acoustic field-assisted inkjet printing of graphene-reinforced polydimethylsiloxane composites. Manuf Lett 35:717–724. https://doi.org/10.1016/j.mfglet.2023.08.087

    Article  Google Scholar 

  97. Adekoya GJ, Sadiku RE, Ray SS (2021) Nanocomposites of PEDOT: PSS with graphene and its derivatives for flexible electronic applications: a review. Macromol Mater Eng 306:2000716. https://doi.org/10.1002/mame.202000716

    Article  CAS  Google Scholar 

  98. Olowo OO, Zhang R, Sherehiy A, Goulet B, Curry A, Wei D, Yang Z, Alqatamin M, Popa DO (2022) Inkjet printing of PEDOT: PSS inks for robotic skin sensors. In: International manufacturing science and engineering conference. american society of mechanical engineers, vol 85802: V001T07A004. https://doi.org/10.1115/MSEC2022-80989

  99. Hassan RU, Khalil SM, Khan SA, Ali S, Moon J, Cho DH, Byun D (2022) High-resolution, transparent, and flexible printing of polydimethylsiloxane via electrohydrodynamic jet printing for conductive electronic device applications. Polymers 14:4373. https://doi.org/10.3390/polym14204373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiang L, Huang Y, Zhang X, Qin H (2020) Electrohydrodynamic inkjet printing of Polydimethylsiloxane (PDMS). Procedia Manufacturing 48:90–94. https://doi.org/10.1016/j.promfg.2020.05.024

    Article  Google Scholar 

  101. Chen Y, Jamshidi R, Montazami R (2020) Study of partially transient organic epidermal sensors. Materials 13(5):1112. https://doi.org/10.3390/ma13051112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Esa Z, Nauman MM, Asif I, Zaini J (2022) Sprayability analysis of pristine and enhanced PEDOT: PSS inks via electrohydrodynamic spray deposition. Mater Sci Forum 1076:65–72. https://doi.org/10.4028/p-e7k1q6

    Article  Google Scholar 

  103. Dong H, Zhang L, Wu T, Song H, Luo J, Huang F, Zuo C (2021) Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing. Org Electron 89:106044. https://doi.org/10.1016/j.orgel.2020.106044

    Article  CAS  Google Scholar 

  104. Ahn JH, Hong HJ, Lee CY (2021) Temperature-sensing inks using electrohydrodynamic inkjet printing technology. Materials 14:5623. https://doi.org/10.3390/ma14195623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang K, Yang D, Park J, Kim S, Cho I, Yang HH, Cho M, Mousavi S, Choi KH, Park I (2017) Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications. Sens Actuators B Chem 250:574–583. https://doi.org/10.1016/j.snb.2017.04.194

    Article  CAS  Google Scholar 

  106. Lu CH, Leu CM, Yeh NC (2021) Single-step direct growth of graphene on Cu ink toward flexible hybrid electronic applications by plasma-enhanced chemical vapor deposition. ACS Appl Mater Interfaces 13:6951–6959. https://doi.org/10.1021/acsami.0c22207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Projects of basic scientific research projects of Liaoning Provincial Department of Education (Grant No. JYTZD2023169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhang, Z. A review of functional E-jet inks for manufacturing flexible sensors. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09979-6

Navigation