Log in

Influence of ink properties and voltage parameters on piezoelectric inkjet droplet formation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For piezoelectric inkjet printing, it is important to stably eject droplets and to accurately control their size and velocity. This paper aims to study the effects of ink properties and voltage parameters on the formation of piezoelectric inkjet droplets. A high-speed camera was used to watch the process of droplet formation for sodium alginate, alcohol, and gelatin inks with Z values between 2.1 and 16.2, at 50 V–120 V voltage amplitude and 2000 Hz–10000 Hz ejecting frequency. The images of droplet formation show that as the ink concentration increases, the ink jettability is reduced, the velocity of the droplets decreases significantly, and their diameter decreases slightly. As the voltage amplitude increases, the ink jettability improves, the velocity of the droplets increases significantly, and their diameter increases slightly. The voltage frequency has no obvious effect on both velocity and diameter of the ink droplet. However, when the voltage frequency is 8000 Hz or above, it may cause the continuous ejection of droplets to coalesce. Our findings may support the efforts to achieve improved stable ejection of droplets and to better control their size and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Savart, Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. de Chimie. et de. Physique 53, 337–386 (1833)

    Google Scholar 

  2. R. Zimmermann, C. Hentschel, F. Schron, D. Moedder, T. Buttner, P. Atallah, T. Wegener, T. Gehring, S. Howitz, U. Freudenberg, C. Werner, High resolution bioprinting of multi-component hydrogels. Biofabrication 11, 1–9 (2019)

    Article  Google Scholar 

  3. E. Masaeli, V. Forster, S. Picaud, F. Karamali, M.H. Nasr-Esfahani, C.A. Marquette, Tissue engineering of retina through high resolution 3-dimentional inkjet bioprinting. Biofabrication 12, 1–12 (2019)

    Google Scholar 

  4. S. Yoon, J.A. Park, H.R. Lee, W.H. Yoon, D.S. Hwang, S. Jung, Inkjet-spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures. Adv. Healthcare Mater. 7, 1–10 (2018)

    Google Scholar 

  5. P. Lorwongtragool, E. Sowade, N. Watthanawisuth, R.R. Baumann, T. Kerdcharoen, A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14, 19700–19712 (2014)

    Article  Google Scholar 

  6. C.T. Wang, K.Y. Huang, D.T. Lin, W.C. Liao, H.W. Lin, Y.C. Hu, A flexible proximity sensor fully fabricated by inkjet printing. Sensors 10, 5054–5062 (2010)

    Article  Google Scholar 

  7. K. Joshi, V. Velasco, R. Esfandyarpour, A. Low-Cost, Disposable and portable inkjet-printed biochip for the develo** world. Sensors 20, 1–16 (2020)

    Article  Google Scholar 

  8. R. Li, H. Fan, L. Shen, L. Rao, J. Tang, S. Hu, H. Lin, Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. Chemosphere 250, 1–8 (2020)

    Google Scholar 

  9. K. Sen, A. Manchanda, T. Mehta, A.W.K. Ma, B. Chaudhuri, Formulation design for inkjet-based 3D printed tablets. Int. J. Pharm. 584, 1–11 (2020)

    Article  Google Scholar 

  10. M. Kyobula, A. Adedeji, M.R. Alexander, E. Saleh, R. Wildman, I. Ashcroft, P.R. Gellert, C.J. Roberts, 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J. Controll. Rselease 261, 207–215 (2017)

    Article  Google Scholar 

  11. T. Xuan, S. Shi, L. Wang, H.C. Kuo, R.J. **e, Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 11, 5184–5191 (2020)

    Article  Google Scholar 

  12. C. Xu, Z. Zhang, Y. Huang, H. Xu, Phase diagram of pinch-off behaviors during drop-on-demand inkjetting of alginate solutions. J. Manuf. Sci. Eng. 141, 1–6 (2019)

    Google Scholar 

  13. Q. Gao, Y. He, J.-Z. Fu, J.-J. Qiu, Y.-A. **, Fabrication of shape controllable alginate microparticles based on drop-on-demand jetting. J. Sol-Gel. Sci. Technol. 77, 610–619 (2016)

    Article  Google Scholar 

  14. H. Wijshoff, The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491, 77–177 (2010)

    Article  ADS  Google Scholar 

  15. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)

    Article  ADS  Google Scholar 

  16. J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand Jets. IBM. J. Res Develor. 322–333 (1984)

  17. B. Derby, Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 31, 2543–2550 (2011)

    Article  Google Scholar 

  18. N. Reis, B. Derby, Ink jet deposition of ceramic suspensions: Modelling and experiments of droplet formation. Mater. Res. Soc. Sympos. Proceeding 624, 65–70 (2000)

    Article  Google Scholar 

  19. D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet printability. Langmuir 25, 2029–3035 (2009)

    Google Scholar 

  20. J.G. Korvink, P.J. Smith, D.-Y. Shin, Inkjet-based Micromanufacturing. Wiley-VCH, (2012)

  21. R.E. Saunders, J.E. Gough, B. Derby, Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29, 193–203 (2008)

    Article  Google Scholar 

  22. P.C. Duineveld, M.M. de Kok, M. Buechel, A. Sempel, K.A.H. Mutsaers, P. van de Weijer, I.G.J. Camps, T. van de Biggelaar, J.-E.J.M. Rubingh, E.I. Haskal, Ink-jet printing of polymer light-emitting devices. 4464, 59–67 (2002)

    ADS  Google Scholar 

  23. D.B. Bogy, F.E. Taike, Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices. IBM J. Res. Dev. 28, 314–321 (1984)

    Article  Google Scholar 

  24. Y.-F. Liu, Y.-F. Pai, M.-H. Tsai, W.-S. Hwang, Investigation of driving waveform and resonance pressure in piezoelectric inkjet printing. Appl. Phys. A 109, 323–329 (2012)

    Article  ADS  Google Scholar 

  25. D.W.C. Xu, Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting. J. Manuf. Sci. Eng. 140, 1–9 (2018)

    Google Scholar 

  26. H. Wijshoff, Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 36, 20–27 (2018)

    Article  Google Scholar 

  27. K. Wang, J. ** J. 24, 1272–1280 (2018)

    Article  Google Scholar 

  28. K. Li, J.-K. Liu, W.-S. Chen, L. Zhang, Controllable printing droplets on demand by piezoelectric inkjet: applications and methods. Microsyst. Technol. 24, 879–889 (2017)

    Article  Google Scholar 

  29. T. Xu, H. Kincaid, A. Atala, J.J. Yoo, High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology. J. Manuf. Sci. Eng. 130, 1–5 (2008)

    Google Scholar 

  30. C.L. Herran, W. Wang, Y. Huang, V. Mironov, R. Markwald, Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting. J. Manuf. Sci. Eng. 132, 1–7 (2010)

    Article  Google Scholar 

  31. N. Reis, C. Ainsley, B. Derby, Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97, 1–6 (2005)

    Article  Google Scholar 

  32. H. Dong, W.W. Carr, J.F. Morris, An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 1–16 (2006)

    Article  Google Scholar 

  33. C.L. Herran, Y. Huang, Alginate Microsphere Fabrication Using Bipolar Wave-Based Drop-on-Demand Jetting. J. Manufactur Processes 14, 98–106 (2012)

    Article  Google Scholar 

  34. S.V. Minov, F. Cointault, J. Vangeyte, J.G. Pieters, D. Nuyttens, Droplet generation and characterization using a piezoelectric droplet generator and high speed imaging techniques. Crop Protection 69, 18–27 (2015)

    Article  Google Scholar 

  35. S.-H. Kang, S. Kim, D.K. Sohn, H.S. Ko, Analysis of drop-on-demand piezo inkjet performance. Phys. Fluids 32, 1–7 (2020)

    Google Scholar 

  36. J. Zhou, Z. Pei, Experimental study of the piezoelectric drop-on-demand drop formation in a coaxial airflow. Chem. Eng. Process. Process Intens. 147, 1–13 (2020)

    Google Scholar 

  37. K. Li, W. Chen, J. Liu, H. Li, N. Qi, Y. Liu, Research on the spreading characteristics of biodegradable ethyl cyanoacrylate droplet of a piezoelectric inkjet. Sens. Actuators, A 302, 1–10 (2020)

    Google Scholar 

  38. Y. Liu, B. Derby, Experimental study of the parameters for stable drop-on-demand inkjet performance. Phys. Fluids 31, 1–11 (2019)

    Google Scholar 

  39. S. Wang, Y. Zhong, H. Fang, Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system. J. Fluid Mech. 869, 634–645 (2019)

    Article  ADS  Google Scholar 

  40. H.C. Nallan, J.A. Sadie, R. Kitsomboonloha, S.K. Volkman, V. Subramanian, Systematic Design of Jettable Nanoparticle-Based Inkjet Inks: Rheology, Acoustics, and Jettability. Langmuir 30, 13470–13477 (2014)

    Article  Google Scholar 

  41. S.Y.A.U.K. Morishima, Stable ejection of micro droplets containing microbeads by a piezoelectric inkjet head. J. Micro-nano. Mech. 7, 87–95 (2012)

  42. J. Chang, Y. Liu, B. Huang, Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model. J. Micromech. Microeng. 27, 075023 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research and Development Projects of People's Liberation Army (No. BWS17J036, 18-163-13-ZT-003-011-01)) and the National Natural Science Foundation of China (51835010 and 51375371). The authors would like to thank Mr Siming Yang from Chinese PLA General Hospital for the experiment methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Lian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, T., Lian, Q., Zhao, T. et al. Influence of ink properties and voltage parameters on piezoelectric inkjet droplet formation. Appl. Phys. A 127, 11 (2021). https://doi.org/10.1007/s00339-020-04151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04151-8

Keywords

Navigation