Log in

Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible strain sensors with high sensitivity, wide detection range, and low detection limit have continuously attracted great interest due to their tremendous application potential in areas such as health/medical-care, human—machine interface, as well as safety and security. While both of a high sensitivity and a wide working range are desired key parameters for a strain sensor, they are usually contrary to each other to be achieved on the same sensor due to the tightly structure dependence of both of them. Here, a flexible strain sensor with both high sensitivity and wide strain detection range is prepared based on the design of an integrated membrane containing both of parallel aligned and randomly aligned carbon nanofibers (CNFs). The parallel aligned CNF membrane (p-CNF) exhibits a low strain detection limit and high sensitivity, while the random aligned CNF membrane (r-CNF) exhibits a large strain detection range. Taking the advantages of both p-CNF and r-CNF, the strain sensor with stacked p-CNF and r-CNF (p/r-CNF) exhibits both high sensitivity and wide working range. Its gauge factor (GF) is 1,272 for strains under 0.5% and 2,266 for strain from 70% to 100%. At the same time, it can work in a wide strain range of 0.005% to 100%, fulfilling the requirements for accurately detecting full-range human motions. We demonstrated its applications in the recognition of facial expressions and joint movements. Furtherly, we constructed an intelligent lip-language recognition system, which can accurately track phonetic symbols and may help people with language disabilities, proving the potential of this strain sensor in health management and medical assistance. Besides, we foresee that the dual-alignment structure design of the p/r-CNF strain sensor may also be applied in the design of other high performance sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    CAS  Google Scholar 

  2. Liu, S. Q.; Zhang, J. C.; Zhang, Y. Z.; Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 2020, 11, 5615.

    CAS  Google Scholar 

  3. Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.

    CAS  Google Scholar 

  4. Wang, Z. Y.; Shin, J.; Park, J. H.; Lee, H.; Kim, D. H.; Liu, H. F. Engineering materials for electrochemical sweat sensing. Adv. Funct. Mater. 2021, 31, 2008130.

    CAS  Google Scholar 

  5. Lin, Y. J.; Bariya, M.; Nyein, H. Y. Y.; Kivimäki, L.; Uusitalo, S.; Jansson, E.; Ji, W. B.; Yuan, Z.; Happonen, T.; Liedert, C. et al. Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring. Adv. Funct. Mater. 2019, 29, 1902521.

    Google Scholar 

  6. Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J. S.; Shin, J.; Choi, C.; Kang, J. H.; Suh, J. M. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 2021, 7, eabg8459.

    Google Scholar 

  7. Jung, Y. H.; Hong, S. K.; Wang, H. S.; Han, J. H.; Pham, T. X.; Park, H.; Kim, J.; Kang, S.; Yoo, C. D.; Lee, K. J. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020.

    CAS  Google Scholar 

  8. Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383.

    CAS  Google Scholar 

  9. Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

    CAS  Google Scholar 

  10. Dinh, T.; Nguyen, T.; Phan, H. P.; Nguyen, T. K.; Dau, V. T.; Nguyen, N. T.; Dao, D. V. Advances in rational design and materials of high-performance stretchable electromechanical sensors. Small 2020, 16, 1905707.

    CAS  Google Scholar 

  11. Guo, Y. J.; Wei, X.; Gao, S.; Yue, W. J.; Li, Y.; Shen, G. Z. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288.

    CAS  Google Scholar 

  12. Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192.

    CAS  Google Scholar 

  13. Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; **, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

    CAS  Google Scholar 

  14. Zhang, J. L.; Wang, M.; Yang, Z. H.; Zhang, X. H. Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 2021, 176, 139–147.

    CAS  Google Scholar 

  15. Zhou, X. Z.; Zhang, X.; Zhao, H. X.; Krishnan, B. P.; Cui, J. X. Self-healable and recyclable tactile force sensors with post-tunable sensitivity. Adv. Funct. Mater. 2020, 30, 2003533.

    CAS  Google Scholar 

  16. Bi, P.; Liu, X. W.; Yang, Y.; Wang, Z. Y.; Shi, J.; Liu, G. M.; Kong, F. F.; Zhu, B. P.; **ong, R. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv. Mater. Technol. 2019, 4, 1900426.

    CAS  Google Scholar 

  17. Guan, F. Y.; **e, Y.; Wu, H. X.; Meng, Y.; Shi, Y.; Gao, M.; Zhang, Z. Y.; Chen, S. Y.; Chen, Y.; Wang, H. P. et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity. ACS Nano 2020, 14, 15428–15439.

    CAS  Google Scholar 

  18. Zhang, H. Y.; Lowe, A.; Kalra, A.; Yu, Y. A flexible strain sensor based on embedded ionic liquid. Sensors 2021, 21, 5760.

    CAS  Google Scholar 

  19. Wang, X. P.; Liu, X.; Bi, P.; Zhang, Y. Y.; Li, L. T.; Guo, J. R.; Zhang, Y.; Niu, X. F.; Wang, Y.; Hu, L. et al. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl. Mater. Interfaces 2020, 12, 53966–53972.

    CAS  Google Scholar 

  20. Yang, L.; Wang, R. Y.; Song, Q. T.; Liu, Y.; Zhao, Q. Q.; Shen, Y. F. One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization. Compos. Part A: Appl. Sci. Manuf. 2017, 101, 195–198.

    CAS  Google Scholar 

  21. Araromi, O. A.; Graule, M. A.; Dorsey, K. L.; Castellanos, S.; Foster, J. R.; Hsu, W. H.; Passy, A. E.; Vlassak, J. J.; Weaver, J. C.; Walsh, C. J. et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224.

    CAS  Google Scholar 

  22. Xu, W. J. H.; Hu, S. Y.; Zhao, Y.; Zhai, W.; Chen, Y. H.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 2021, 90, 106606.

    CAS  Google Scholar 

  23. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

    Google Scholar 

  24. Yu, Y.; Luo, Y. F.; Guo, A.; Yan, L. J.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 2017, 9, 6716–6723.

    CAS  Google Scholar 

  25. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    CAS  Google Scholar 

  26. Tang, N.; Zhou, C.; Qu, D. Y.; Fang, Y.; Zheng, Y. B.; Hu, W. W.; **, K.; Wu, W. W.; Duan, X. X.; Haick, H. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 2020, 16, 2001363.

    CAS  Google Scholar 

  27. Wang, Z. Y.; Bi, P.; Yang, Y.; Ma, H. Y.; Lan, Y. C.; Sun, X. L.; Hou, Y.; Yu, H. Y.; Lu, G. X.; Jiang, L. M. et al. Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 2021, 80, 105559.

    CAS  Google Scholar 

  28. Zhang, B. C.; Wang, H.; Zhao, Y.; Li, F.; Ou, X. M.; Sun, B. Q.; Zhang, X. H. Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 2016, 8, 2123–2128.

    CAS  Google Scholar 

  29. Xu, W.; Yang, T. T.; Qin, F.; Gong, D. D.; Du, Y. J.; Dai, G. A sprayed graphene pattern-based flexible strain sensor with high sensitivity and fast response. Sensors 2019, 19, 1077.

    CAS  Google Scholar 

  30. Luo, C. Z.; Jia, J. J.; Gong, Y. N.; Wang, Z. C.; Fu, Q.; Pan, C. X. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 2017, 9, 19955–19962.

    CAS  Google Scholar 

  31. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    CAS  Google Scholar 

  32. Ou, Y.; Zhao, T. T.; Zhang, Y.; Zhao, G. H.; Dong, L. J. Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. Mater. Horiz. 2022, 9, 1679–1689.

    CAS  Google Scholar 

  33. Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 2019, 29, 1808695.

    Google Scholar 

  34. Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050.

    CAS  Google Scholar 

  35. Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012, 12, 5714–5718.

    CAS  Google Scholar 

  36. Chao, M. Y.; Wang, Y. G.; Ma, D.; Wu, X. X.; Zhang, W. X.; Zhang, L. Q.; Wan, P. B. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 2020, 78, 105187.

    CAS  Google Scholar 

  37. Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66, 104134.

    CAS  Google Scholar 

  38. Chen, Y.; Zhang, Y. Y.; Song, F.; Zhang, H. Y.; Zhang, Q. K.; Xu, J.; Wang, H. P.; Ke, F. Y. Graphene decorated fiber for wearable strain sensor with high sensitivity at tiny strain. Adv. Mater. Technol. 2021, 6, 2100421.

    CAS  Google Scholar 

  39. Wang, C. Y.; **a, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.

    CAS  Google Scholar 

  40. Wang, C. Y.; **a, K. L.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces 2017, 9, 39484–39492.

    CAS  Google Scholar 

  41. Wang, Q.; Jian, M. Q.; Wang, C. Y.; Zhang, Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017, 27, 1605657.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52125201 and 21975141) and the National Key Research and Development Program of China (No. 2020YFA0210702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Electronic Supplementary Material

12274_2022_5162_MOESM1_ESM.pdf

Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces

Supplementary material, approximately 26.1 MB.

Supplementary material, approximately 11.5 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, P., Zhang, M., Li, S. et al. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res. 16, 4093–4099 (2023). https://doi.org/10.1007/s12274-022-5162-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5162-0

Keywords

Navigation