Strategies for Abiotic Stress Management in Plants Through Soil Rhizobacteria 

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Abstract

Soil is among the most challenging ecosystems for microbiologists in terms of microbial diversity and community size. Prokaryotes are the most abundant organisms in the soil and constitute the largest component of the soil biomass. In their native ecosystem, microorganisms live under different kinds of interactions that decide their survival and functioning. Both positive and negative interactions may operate under natural conditions. While negative interactions are inhibitory for microbial growth and development; positive ones are among the beneficial and sometimes obligatory for the growth of some other microorganisms. Therefore, these soil microbial communities may affect plant growth and development in several ways. They may have a direct or indirect role in plant growth and development through the synthesis of different chemical regulators in the rhizosphere’s proximity. Under direct mechanisms, they help the plants in macro/micronutrient uptake as well as by modulating plant hormone levels. Indirectly microbes may boost plant health by declining the detrimental effects of the biotic as well as abiotic stress. Among them, understanding the microbe-mediated abiotic stress tolerance mechanisms in plants is one of the major challenges in the field of agricultural research. Abiotic stresses like chilling injury, drought, high temperature, heavy metal toxicity, and salinity pose a major constraint to plant growth and crop production under natural field conditions. Because of the global food demand and limited resources, it becomes essential to generate deeper insights into the stress-alleviating mechanisms and the approaches employed by the plants, so that they can be explored for sustainable agricultural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, HealK V (2016) Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293

    Article  CAS  PubMed  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

    Google Scholar 

  • Alavi P, Starcher MR, Thallinger GG, Zachow C, Müller H, Berg G (2014) Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics 15(1):1–15

    Article  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3(9):1012–1035

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159(12):2437–2443

    Google Scholar 

  • Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93:1–9

    Article  CAS  Google Scholar 

  • Bernstein JA, Lin PH, Cohen SN, Lin-Chao S (2004) Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci USA 101(9):2758–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco JF, Osorio R, Casassa G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol 54(184):538–550

    Google Scholar 

  • Castanie-Cornet MP, Bruel N, Genevaux P (2014) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843(8):1442–1456

    Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in archaea. Extremophiles 4(6):321–331

    Article  CAS  PubMed  Google Scholar 

  • Chaikam V, Karlson DT (2010) Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep 43(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A (2017) Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front Microbiol 8:2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Chodak M, GoÅ‚ebiewski M, Morawska-PÅ‚oskonka J, Kuduk K, NikliÅ„ska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash B, Soni R, Kumar V, Suyal DC, Dash D, Goel R (2019) Mycorrhizosphere: microbial interactions for sustainable agricultural production. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 321–338

    Chapter  Google Scholar 

  • Dikilitas M, Karakas S, Simsek E, Yadav AN (2021) Microbes from cold deserts and their applications in mitigation of cold stress in plants. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 126–152. https://doi.org/10.1201/9780429328633-7

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Barka EA (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 4:496–504

    Article  CAS  Google Scholar 

  • Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014) Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201:916–927

    Article  CAS  PubMed  Google Scholar 

  • Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 94:289–301

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol 150(1):171–180

    Article  CAS  Google Scholar 

  • Giri K, Paliwal R, Suyal DC, Mishra G, Pandey S, Rai JPN, Verma PK (2015) Potential application of plant-microbe interaction for restoration of degraded ecosystems. In: Singh S, Srivastava K (eds) Handbook of research on uncovering new methods for ecosystem management through bioremediation. IGI Global, Hershey PA, USA, pp 255–285

    Google Scholar 

  • Goel R, Kumar V, Suyal DC, Dash B, Kumar P, Soni R (2017a) Root-associated bacteria: rhizoplane and endosphere. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 161–176

    Chapter  Google Scholar 

  • Goel R, Suyal DC, Narayan DB, Soni R (2017b) Soil metagenomics: a tool for sustainable agriculture. In: Kalia V, Shouche Y, Purohit H, Rahi P (eds) Mining of microbial wealth and metagenomics. Springer Nature Singapore, pp 217–225

    Google Scholar 

  • Goel R, Kumar V, Suyal DC, Narayan DB, Soni R (2018a) Toward the unculturable microbes for sustainable agricultural production. In: Meena VS (ed), Role of rhizospheric microbes in soil. Springer Nature Singapore pp 107–123

    Google Scholar 

  • Goel R, Suyal DC, Kumar V, Jain L, Soni R (2018b) Stress-tolerant beneficial microbes for sustainable agricultural production. In: Panpatte et al. (eds), Microorganisms for green revolution, microorganisms for sustainability 7. Springer Nature Singapore Pte Ltd, pp 141–159

    Google Scholar 

  • Guarino C, Sciarrillo R (2017) Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecol Eng 99:70–82

    Article  Google Scholar 

  • Gupta S, Kaushal R, Sood G, Dipta B, Kirti S, Spehia RS (2019) Water stress amelioration and plant growth promotion in Capsicum plants by osmotic stress tolerant bacteria. Int J Plant Soil Sci 29:1–12

    Article  CAS  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27:1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Hamidia MAE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(58):1–17

    Google Scholar 

  • Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1(2):211–219

    CAS  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al. (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Heyer R, Schallert K, Siewert C et al (2019) Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 7(69):1–17

    Google Scholar 

  • Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34(15):4189–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyakumar SP, Dash B, Singh AK, Suyal DC, Soni R (2020) Nutrient cycling at higher altitudes. In: Goel R, Soni R, Suyal DC (eds) Microbiological advancements for higher altitude agro-ecosystems & sustainability. Springer Nature Singapore Pvt Ltd Singapore, pp 293–305

    Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35(5):620–649

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Kumar S, Suyal DC, Goel R (2017) The microbiome of the himalayan ecosystem. In: Kalia V, Shouche Y, Purohit H, Rahi P (eds) Mining of microbial wealth and metagenomics. Springer, Singapore, pp 101–116

    Chapter  Google Scholar 

  • Joshi D, Chandra R, Suyal DC, Kumar S, Goel R (2019) Impact of bioinoculants Pseudomonas jesenii MP1 and Rhodococcus qingshengii S10107 on Cicer arietinum yield and soil nitrogen status. Pedosphere 29(3):388–399

    Article  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Babar MA, Khan N, Guo J, Khan J, Islam S, Shrestha S, Shahi D (2019) Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS ONE 14(3):e0213502

    Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4:31–41

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ (2019) Halotolerant Rhizobacterial strains mitigate the adverse effects of NaCl stress in Soybean seedlings. Biomed Res Int 9530963:1–15

    Google Scholar 

  • Kingsley SA, Kurt R (1994) A research of the northern harbour of Dor, Israel. Int J Nautical Archaeol 23(4):289–295

    Google Scholar 

  • Kodzius R, Gojobori T (2015) Marine metagenomics as a source for bioprospecting. Mar Genomics 24(1):21–30

    Article  PubMed  Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Yadav AN (2020) Microbe mediated mitigation of drought stress in crops. Agric Lett 1:79–82

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al. (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020b) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B 90:785–795. https://doi.org/10.1007/s40011-019-01151-4

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020c) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020d) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN (2018) Drought stress in plants and their mitigation by soil microbiomes. EU Voice 4:29–30

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

  • Kuiper L, Hermsen W, Mendez M (2004) Discovery of hard nonthermal pulsed X-ray emission from the anomalous X-ray pulsar 1e 1841–045. Astrophys J 613:1173–1178

    Article  CAS  Google Scholar 

  • Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii strain MP1 against Native Cicer arietinum L., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afri J Microbiol 8(50):3931–3943

    Google Scholar 

  • Kumar N, Suyal DC, Sharma IP, Verma A, Singh H (2017) Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. 3Biotech. 7(205):1–8

    Google Scholar 

  • Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nut 41(8):1035–1046

    Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al. (2019) Fungal phytoremediation of heavy metal-contaminated resources: Current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 3: perspective for sustainable environments. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS ONE 14(3):e0213844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2020) Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress Chaperones 25(6):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Detong K, **g L, Ming JZ (2012) Fault detection of planetary gearboxes using new diagnostic parameters. Meas Sci Technol 23:5

    Article  CAS  Google Scholar 

  • Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y (2013) Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Sci Rep 3:2347

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackova Z, Koblovska R, Lapcik O (2006) Distribution of isoflavonoids in non-leguminous taxa: an update. Phytochemistry 67:849–855

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361

    Article  PubMed  Google Scholar 

  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. PNAS 102(48):17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front Plant Sci 8:1–25

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Niu X, Song L, **ao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2020) The quest for ‘osmosensors’ in plants. J Exp Bot 71:595–607

    Article  CAS  PubMed  Google Scholar 

  • Ojuederie OB, Oluwaseyi SO, Olubukola OB (2019) Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9(11):712

    Article  CAS  Google Scholar 

  • Pareek A, Dhankher OP, Foyer CH (2020) Mitigating the impact of climatic change on plant productivity and ecosystem sustainability. J Exp Bot 71:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  PubMed  Google Scholar 

  • Phadtare S, Inouye M (2008) The cold shock response. Ecosal plus 3(1):93–108

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Google Scholar 

  • Prakash JSS, Sinetova M, Zorina A, Kupriyanova E, Suzuki I, Murata N, Los DA (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol Biosyst 5(12):1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Raghuwanshi R, Prasad JK (2018) Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. In: Giri B, Prasad R, Varma A (eds) Root biology. Springer Nature Singapore Pvt Ltd Singapore Pp 303–321

    Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al. (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

  • Rajwar J, Chandra R, Suyal DC, Tomer S, Kumar S, Goel R (2018) Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia 73(8):793–802

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Sharma M, Suyal DC, Singh DK, Joshi D, Singh P, Goel R (2019) Psyhcrotolerant bio-inoculants and their co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture. J Soil Sci Plant Nutr 19(3):639–647

    Article  CAS  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9(1):547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouphael Y, Spichal L, Panzarova K, Casa R, Colla G (2018) High-throughput plant phenoty** for develo** novel biostimulants: from lab to field or from field to lab? Front Plant Sci. 9:1197

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G, De Carlo A, Mahmood T, Centritto M (2018) Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS One 13(2):e0191218

    Google Scholar 

  • Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39(11):763–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13(7):1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al. (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Shivaji S, Prakash JS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Jadon N, Jain R (2016) Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. Trends Anal Chem 82:55–67

    Article  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Soni R, Suyal DC, Sai S, Goel R (2016) Exploration of nifH gene through soil metagenomes of the western Indian Himalayas. Biotech 6(1):1–4

    Google Scholar 

  • Soni R, Suyal DC, Agrawal K, Yadav A, Souche Y, Goel R (2015) Differential proteomic analysis of Himalayan psychrotolerant diazotroph Pseudomonas palleroniana N26 Strain under low temperature diazotrophic conditions. CryoLetters 36(2):74–82

    PubMed  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV et al (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E et al (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteomics 136:202–213

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco Mdel C, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21(7):958–966

    Article  PubMed  CAS  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant Microbiomes for Sustainable Agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

  • Subramanian P, Mageswari Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28(10):1073–1081

    Google Scholar 

  • Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ, Yang DC (2015) Paenibacillus yonginensis DCY84 (T) induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lei C, Khan E, Chen SS, Tsang DCW, Ok YS, Lin D, Feng Y, Li XD (2017) Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Chemosphere 176:315–323

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014a) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Shukla A, Goel R (2014b) Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against Native Vigna radiata (L.) Wilczek. 3Biotech 4:665–668

    Google Scholar 

  • Suyal DC, Soni R, Sai S, Goel R (2015a) Microbial inoculants as biofertilizer. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, Berlin Heidelberg, pp 311–318

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015b) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). Biotech 5(4):433–441

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015c) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris L.) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305—313

    Google Scholar 

  • Suyal DC, Kumar S, Yadav A, Shouche Y, Goel R (2017) Cold stress and nitrogen deficiency affected protein expression of psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1. Front Microbiol 8(430):1–6

    Google Scholar 

  • Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018) Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. J Proteomics 187:235–242

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Joshi D, Debbarma P, Soni R, Dash B, Goel R (2019a) Soil metagenomics: unculturable microbial diversity and its function. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 355–362

    Chapter  Google Scholar 

  • Suyal DC, Joshi D, Kumar S, Soni R, Goel R (2019b) Differential protein profiling of soil diazotroph Rhodococcus qingshengii S10107 towards low-temperature and nitrogen deficiency. Sci Rep. https://doi.org/10.1038/s41598-019-56592-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Suyal DC, Kumar S, Joshi D, Yadav A, Shouche Y, Goel R (2019c) Comparative overview of red kidney bean (Phaseolus valgaris) rhizospheric bacterial diversity in perspective of altitudinal variations. Biologia 74(10):1405–1413

    Article  CAS  Google Scholar 

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold adapted microorganisms: survival mechanisms and applications. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 177–192

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian J Microbiol 53(11):1195–1202

    Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9(5):e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: volume 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Tomer S, Suyal DC, Goel R (2016) Biofertilizers: a timely approach for sustainable agriculture. In: Choudhary DK, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer Nature Singapore Pvt Ltd Singapore Pp 375–395

    Google Scholar 

  • Tomer S, Suyal DC, Rajwar J, Yadav A, Shouche Y, Goel R (2017) Isolation and characterization of Phosphate solubilizing bacteria from Western Indian Himalayan soils. 3Biotech 7(2):95–99

    Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Verma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Google Scholar 

  • Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP (2015) RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 6:141

    PubMed  PubMed Central  Google Scholar 

  • Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS ONE 9(12):e114744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

  • Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora M, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ (2005) Acclimation to soil flooding-sensing and signal-transduction. Plant Soil 274:197–214

    Article  CAS  Google Scholar 

  • Vurukonda SS, Vardharajula S, Shrivastava M, Sk ZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang C, Yang W, Wang C, Gu C, Niu D, Liu H et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth- promoting rhizobacterium strains. PLoS ONE 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 C) increases expression of biofilm-, cold-shock-and RpoS-dependent genes in Escherichia coli K-12. Microbiol 154(1):148–166

    Article  CAS  Google Scholar 

  • Williams TJ, Burg DW, Raftery MJ, Poljak A, Guilhaus M, Pilak O, Cavicchioli R (2009) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii part I: the effect of growth temperature. J Proteome Res 9(2):640–652

    Article  CAS  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Saxena AK (2018a) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Yadav N (2018b) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al. (2020a) Saline microbiome: Biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier, Amsterdam pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO. 01:48–54

    Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS et al. (2019) Psychrotrophic Microbes: Biodiversity, Mechanisms of Adaptation, and Biotechnological Implications in Alleviation of Cold Stress in Plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management : Volume 1: Rhizobacteria in Abiotic Stress Management. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020b) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020c) Microbiomes of extreme environments, volume 2: biotechnological applications in agriculture, environment and industry. CRC Press, Taylor & Francis Group, Boca Raton, USA

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020d) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021a) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021b) Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 278–290. https://doi.org/10.1201/9780429328633-16

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yee BK, Marighetto A, Rawlins JNP (1998) the effect of cytotoxic entorhinal lesions and electrolytic medial septal lesions on the acquisition and retention of a spatial working task. Exp Brain Res 119:517–528

    Article  PubMed  Google Scholar 

  • Zhang B, Yue L, Zhou L, Qi L, Li J, Dong X (2017) Conserved TRAM domain functions as an archaeal cold shock protein via RNA chaperone activity. Front Microbiol 8:1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Zhu L, **e Y, Li FY, **ao X, Ma ZY, Wang JF (2017) Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Front Plant Sci 8:11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V. et al. (2021). Strategies for Abiotic Stress Management in Plants Through Soil Rhizobacteria . In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_11

Download citation

Publish with us

Policies and ethics

Navigation