Microbial Interactions in the Rhizosphere Contributing Crop Resilience to Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Rhizosphere Microbes

Abstract

Rhizosphere is a hot spot where specific kinds of diverse microbial communities develop under the influence of exudates from plant roots and in turn modulate growth and development of the plant. Such communities with or without interactions perform an array of functions, including nitrogen fixation, P, Zn, Si and K-solubilization, siderophore production, ammonification, hormones production, ACC deaminase production, ethylene production, anammox, comammox, nitrification, denitrification, antagonisms, induce resistance to plant, C-sequestration, volatile production, secondary metabolites production and many others that are known to modulate soil and plant health contributing to the corresponding responses to various stresses of biotic and abiotic nature. The magnitude of resilience of plant to biotic and abiotic stresses is completely dependent on types of communities and their interactions. With enhanced knowledge and understanding about rhizosphere, researchers are evaluating various approaches to engineer rhizosphere in such way that it enables plant to enhance the productivity and sustain it while maintaining soil health. This chapter highlights detailed account of microbial interactions in the rhizosphere with associated mechanisms that contribute to resilience of plants to stress for better growth and development.

All authors contributed in the preparation of manuscript. All authors have approved the final version of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Allah EF (2001) Streptomyces plicatus as a model biocontrol agent. Folia Microbiol 46:309–314

    Article  CAS  Google Scholar 

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maizeseedlings organs. Front Plant Sci 7:276

    PubMed  PubMed Central  Google Scholar 

  • Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7:356–364

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic, Amsterdam, p 635

    Google Scholar 

  • Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64:5269–5279

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    Article  CAS  PubMed  Google Scholar 

  • Asghari S, Harighi B, Ashengroph M, Clement C, Aziz A, Esmaeel Q, Ait Barka E (2020) Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol 69:827–837

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Aziz M, Nadipalli RK, **e X, Sun Y, Surowiec K, Zhang JL, Paré PW (2016) Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Front Plant Sci 7:458. https://doi.org/10.3389/fpls.2016.00458

    Article  PubMed  PubMed Central  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De la Peña C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz FR, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited root microbiomics. Front Plant Sci 4:165. https://doi.org/10.3389/fpls.2013.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckman CH (2000) Phenolic – storing cells: keys to programmed cell death and periterdm formation in wilt disease resistance and in general defense response in plants? Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Berg G (2009) Plante microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crop Prod 143:111–931

    Article  CAS  Google Scholar 

  • Block A, Toruño TY, Elowsky CG, Zhang C, Steinbrenner J, Beynon J, Alfano JR (2013) The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytol 201:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 7:33279

    Article  CAS  Google Scholar 

  • Bokhari A et al (2019) Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 9:1–13

    Article  CAS  Google Scholar 

  • Boller T, Felix GA (2009) Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Buchholz K, Collins J (2013) The roots--a short history of industrial microbiology and biotechnology. Appl Microbiol Biotechnol 97:3747–3762

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  CAS  PubMed  Google Scholar 

  • Čatská V, Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic Press, San Diego; London

    Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguezkabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chen M et al (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H (2009) Ethylene insensitive3 and ethylene insensitive3-like1 repress salicylic acid induction deficient2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong SL, Cheow YL, Ting ASY (2017) Characterizing antagonistic activities and host compatibility (via simple endophyte-calli test) of endophytes as biocontrol agents of Ganoderma boninense. Biol Control 105:86–92

    Article  Google Scholar 

  • Chung JH, Song GC, Ryu CM (2016) Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic Actinobacteria induces defense pathways in Arabidopsis thaliana. MPMI 21:208–218

    Article  CAS  PubMed  Google Scholar 

  • Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FL (2019) Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci 10:979

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L (2013) The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol 162:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:0156

    Article  Google Scholar 

  • Ding T, Su B, Chen X, **e S, Gu S, Wang Q, Huang D, Jiang H (2017) An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Front Plant Sci 8:903

    Article  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG (2009) Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 183:993–1000

    Article  PubMed  Google Scholar 

  • Doyon Y, Choi VM, **a DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7:459–460

    Article  CAS  PubMed  Google Scholar 

  • Drzewiecka K, Borowiak K, Bandurska H, Golinski P (2012) Salicylic acid – a potential bio-marker of tobacco Bel-W3 cell death developed as a response to ground level ozone under ambient conditions. Acta Biol Hung 63:231–249

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P (2009) Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. New Phytol 183:1149–1162

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy G, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 107:672–681

    Article  CAS  Google Scholar 

  • Feng H, Li Y, Liu Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7:1311–1131

    Article  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Gahukar RT (2011) Food security in India: the challenge of food production and distribution. J Agr Food Inform 12:270–286

    Article  Google Scholar 

  • Geelen D, Leyman B, Batoko H, Di Sansebastiano GP, Moore I, Blatt MR (2002) The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. Plant Cell 14:963

    Article  CAS  Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol 43(1):205–227

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producingsoil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Govindasamy V, George P, Kumar M, Aher L, Raina SK, Rane J, Annapurna K, Minhas PS (2020) Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10:13

    Article  PubMed  Google Scholar 

  • Gow NA (1999) Signals and interactions between phytopathogenic zoospores and plant roots. In: “Microbial signaling and communication” 57th symposium of the society for general microbiology. Cambridge University Press, pp 285–305

    Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Ann. Rev. Microbiol. 60:425–449

    Article  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt R (2003) Phytoalexin accumulation: response or defense. Physiol Mol Plant Pathol 62:125–126

    Article  Google Scholar 

  • Hammerschmidt R, Metraux J-P, van Loon LC (2001) Inducing resistance: a summary of papers presented at the First International Symposium on InducedResistance to Plant Diseases, Corfu, May 2000. Eur J Plant Pathol 107:1–6

    Article  Google Scholar 

  • Harborne JB (1989) In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, Vol. 1: Plant phenolics. Academic Press, London

    Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27:335–376

    Article  CAS  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Heidel AJ, Clarke JD, Antonovics J, Dong X (2004) Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168:2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654

    Article  CAS  Google Scholar 

  • Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang Hand Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston ND, McGeorge KM, Mugnozza GS, Harfouche A, Kim SH, Doty SL (2017) An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol 8:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Katagiri Y, Hashidoko Y, Tahara S (2002) Localization of flavonoids in the yellow lupin seedlings and their UV-B-absorbing potential. Z Naturforsch 57:811–816

    Article  CAS  Google Scholar 

  • Kim H, Lee YH (2020) The rice microbiome: a model platform for crop holobiome. Phytobiomes J 4:5–18

    Article  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial Endophytes as elicitors of induced systemic resistance. In: Schulz BJE et al (eds) Microbial root Endophytes, vol 9. Springer-Verlag, pp 33–52

    Google Scholar 

  • Kunihiro S, Hiramatsu T, Kawano T (2011) Involvement of salicylic acid signal transduction in aluminum-responsive oxidative burst in Arabidopsis thaliana cell suspension culture. Plant Signal Behav 6:611–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, **Hee Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169(4):587–596

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen MT, Akita M, Kalkkinen N, Ahola-Iivarinen E, Ro Ronnholm G, Somervuo P, Thelander M, Valkonen JPT (2009) Quickly-released peroxidase of moss in defense against fungal invaders. New Phytol 183:432–443

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao H, Chen S (2006) Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr Microbiol 52:186–190

    Article  CAS  PubMed  Google Scholar 

  • Liu N, You J, Shi W, Liu W, Yang Z (2012) Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant Soil 352:85–97

    Article  CAS  Google Scholar 

  • Liu H, Brettel LE, Qiu Z, Singh BK (2020) Microbiome-mediated stress resistance in plants. Trends Plant Sci 25:733–743

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2012) Electromicrobiology. Ann Rev Microbiol 66:391–409

    Article  CAS  Google Scholar 

  • Lowery CA, Dickerson TJ, Janda KD (2008) Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 37:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD (2009) Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc 131:15584–15585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Dayakar BV, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:1–14

    Article  CAS  Google Scholar 

  • Maleck K, Lawton K (1998) Plant strategies for resistance to pathogens. Curr Opin Biotech 9:208–213

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Singh S, Kumar M, Paul D, Rai JP, Singh HV, Brahmaprakash GP (2020) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Env Res Pub He 17:1434

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Metraux JP (1998) Salicyclic acid and systemic acquired resistance to pathogen attack. Ann Bot 82:535–540

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta PK, Pareek A, Singh DP, Prabha R, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the Omics strategies. Fron Plant Sci 8:1–25

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:97881

    Article  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63(3):708–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JF, Reddy MS, Ryu C-M, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    Article  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38:433–449

    Article  CAS  PubMed  Google Scholar 

  • Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A (2007) Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. Plant J 52:240–251

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan MA, Driouich A (2013) Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Nicholson R, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microb Biot 26:193–203

    Article  CAS  Google Scholar 

  • Nühse TS (2012) Cell wall integrity signaling and innate immunity in plants. Front Plant Sci 3:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    Article  PubMed  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on Rosa. Noare. Hort Sci 48:189–192

    CAS  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhiza formation. New Phytol 81:543–552

    Article  CAS  Google Scholar 

  • Rhodius VA, Mutalik VK, Gross CA (2012) Predicting the strength of UP-elements and full-length E.colis igmaE promoters. Nucleic Acids Res 40:2907–2924

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Durán P (2020) Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front Bioeng Biotech 8:568

    Article  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    Article  CAS  Google Scholar 

  • Rowley-Conwy P, Layton R (2011) Foraging and farming as niche construction: stable and unstable adaptations. Philos Trans R Soc Lond Ser B Biol Sci 366:849–862

    Article  Google Scholar 

  • Ryan CA (2000) The system in signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Brahmaprakash GP (2018) Modified liquid dual culture methodology for screening bacterial endophytes against fungal pathogens. Mysore J Agric Sci 52:234–240

    Google Scholar 

  • Sahu PK, Sharma L, Gupta L, Renu (2016) Rhizospheric and endophytic beneficial microorganisms: treasure for biological control of plant pathogens. In: Santra S, Mallick A (eds) Recent biotechnological applications in India. ENVIS Centre on Environmental Biotechnology, University of Kalyani, Nadia, pp 50–63

    Google Scholar 

  • Sahu PK, Gupta A, Kedarnath KP, Lavanya G, Yadav AK (2017a) Attempts for biological control of Ralstonia solanacearum by using beneficial microorganisms. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 315–342

    Chapter  Google Scholar 

  • Sahu PK, Gupta A, Lavanya G, Bakade R, Singh DP (2017b) Bacterial endophytes: potential candidates for plant growth promotion. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 612–632. https://doi.org/10.1007/978-981-10-5813-4_31

    Chapter  Google Scholar 

  • Sahu PK, Shivaprakash MK, Mallesha BC, Subbarayappa CT, Brahmaprakash GP (2018) Effect of bacterial endophytes Lysinibacillus sp. on plant growth and fruit yield of tomato (Solanum lycopersicum). Int J Curr Microbiol App Sci 7:3399–3408

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash GP, Saxena AK (2019a) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

    Article  CAS  Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2019b) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic 105:601–612

    Article  Google Scholar 

  • Sahu PK, Singh S, Gupta AR, Gupta A, Singh UB, Manzar N, Bhowmik A, Singh HV, Saxena AK (2020a) Endophytic bacilli from medicinal-aromatic perennial holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control 150:104353

    Article  CAS  Google Scholar 

  • Sahu PK, Thomas P, Singh S, Gupta A (2020b) Taxonomic and functional diversity of cultivable endophytes with respect to the fitness of cultivars against Ralstonia solanacearum. J Plant Dis Protect:1–10

    Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: BJE S, CJC B, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 109:996–1004

    Article  CAS  Google Scholar 

  • Shi Y, Sun H, Wang X, ** W, Chen Q, Yuan Z, Yu H (2019) Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. PLoS One 14:e0217204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Singh UB, Sahu A, Sahu N, Singh BP, Singh RK, Singh DP, Jaiswal RK, Sarma BK, Singh HB, Manna MC, Rao AS (2013) Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum mill.) against root knot disease caused by Meloidogyne incognita ?. Appl Soil Ecol 63:45–56

    Article  Google Scholar 

  • Singh UB, Malviya D, Khan W, Singh S, Karthikeyan N, Imran M, Rai JP, Sarma BK, Manna MC, Chaurasia R, Sharma AK, Paul D and Oh J-W (2018) Earthworm grazed-Trichoderma harzianum biofortified spent mushroom substrates modulate accumulation of natural antioxidants and bio-fortification of mineralnutrients in tomato. Front Plant Sci 9:1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UB, Malviya D, Singh S, Imran M, Pathak N, Alam M, Rai JP, Singh RK, Sarma BK, Sharma PK, Sharma AK (2016a) Compatible salt-tolerant rhizosphere microbe-mediated induction of phenylpropanoid cascade and induced systemic responses against Bipolaris sorokiniana (Sacc.) shoemaker causing spot blotch disease in wheat (Triticum aestivum L.). Appl Soil Ecol 108:300–306

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Pradhan JK, Singh BP, Roy M, Imram M, Pathak N, Baisyal BM, Rai JP, Sarma BK (2016b) Bio-protective microbial agents from rhizosphere eco-systems triggering plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–312

    Article  CAS  PubMed  Google Scholar 

  • Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK (2019a) Trichoderma harzianum-and methyl jasmonate-induced resistance to Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Front Microbiol 10:1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UB, Singh S, Khan W, Malviya D, Sahu PK, Chaurasia R, Sharma SK, Saxena AK (2019b) Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. Indian Phytopathol 72:309–320

    Article  Google Scholar 

  • Singh UB, Singh S, Malviya D, Karthikeyan N, Imran M, Chaurasia R, Alam M, Singh P, Sarma BK, Rai JP, Damodaran T (2019c) Integration of anti-penetrant tricyclazole, signaling molecule salicylic acid and root associated Pseudomonas fluorescens enhances suppression of Bipolaris sorokiniana in bread wheat (Triticum aestivum L.). J Plant Pathol 101:943–954. 

    Article  Google Scholar 

  • Singh UB, Singh S, Malviya D, Chaurasia R, Sahu PK, Sharma SK, Saxena AK (2020a) Drechslerella dactyloides and Dactylaria brochopaga mediated structural defense in tomato plants pre-challenged with Meloidogyne incognita. Biol Control 143:104202

    Article  CAS  Google Scholar 

  • Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, Saxena AK (2020b) Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. Int J Env Res Pub He 17:253. 

    Article  CAS  Google Scholar 

  • Singh S, Singh UB, Malviya D, Paul S, Sahu PK, Trivedi M, Paul D, Saxena AK (2020c) Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). Int J Env Res Pub He 17:1396

    Article  CAS  Google Scholar 

  • Singh DP, Singh V, Shukla R, Sahu P, Prabha R, Gupta A, Sarma BK, Gupta VK (2020d) Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiol Res 126538

    Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    Article  CAS  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis (Second Edition). Academic Press. pp 605

    Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Suárez J (2020) The stability of traits conception of the hologenome: an evolutionary account of holobiont individuality. Hist Phil Life Sci 42:1–27

    Article  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition expression and leaf composition. New Phytol 176:673–679

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang P, Jia X, Huo L, Che R, Ma F (2018) Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant systemand activated autophagy in transgenic apple. Plant Biotechnol J 16(2):545–57

    Article  CAS  PubMed  Google Scholar 

  • Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearumin Vitro. World J Microb Biot 22:1275–1280

    Article  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2010) Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense race 4. Am J Agric Biol Sci 5:177–182

    Article  CAS  Google Scholar 

  • Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Mycorrhiza. Springer, Berlin Heidelberg, pp 281–306

    Chapter  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 4:S153–S164

    Article  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Van Loon LC (1997) Induced resistance and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Van West P, Appiah AA, Gow NA (2003) Advances in research on oomycete root pathogens. Physiol Mol Plant Pathol 62:99–113

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liang G (2014) Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum. BioMed Res Int 12:2014

    Google Scholar 

  • Wang S et al (2020) Exploring soil factors determining composition and structure of the bacterial communities in saline-alkali soils of Songnen plain. Front Microbiol 10:2902

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharma Sci 2:40–44

    Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules (Basel, Switzerland) 17(9):10754–10773

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, TuZun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weidenbörner M, Hindorf H, Jha HC, Tsotsonos P (1990) Antifungal activity of flavonoids against storage fungi of the genus Aspergillus. Phytochemistry 29:1103–1105

    Article  Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Bot Res 25:141–169

    Article  CAS  Google Scholar 

  • Winkel Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wirthmueller L, Maqbool A, Banfield MJ (2013) On the front line: structural insights into plant-pathogen interactions. Nat Rev Microbiol 11:761–776

    Article  CAS  PubMed  Google Scholar 

  • Xu P et al (2020) Integration of Jasmonic acid and ethylene in to auxin signaling in root development. Front Plant Sci 11:271. https://doi.org/10.3389/fpls.2020.00271

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Develo** salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM (2016) Impact of a bacterial volatile 2, 3-Butanediol on Bacillus subtilis Rhizosphere robustness. Front Microbiol 7:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Young LS et al (2013) Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74enhances growth and P-utilization rate in maize (Zea mays L.). Appl Soil Ecol 66:40–47

    Article  Google Scholar 

  • Yu X, Zhang W, Lang D, Zhang X, Cui G, Zhang X (2019) Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. J Plant Boil 62:1–13

    Article  CAS  Google Scholar 

  • Yue Z, Shen Y, Chen Y, Liang A, Chu C, Chen C, Sun Z (2019) Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms 7:508

    Article  CAS  PubMed Central  Google Scholar 

  • Zahra N, Mahmood S, Raza ZA (2018) Salinity stress on various physiological and biochemical attributes of two distinct maize (Zea mays L.) genotypes. J Plant Nutr 41:1368–1380

    Article  CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 262:277–288

    Article  CAS  Google Scholar 

  • Zhang H et al (2018) The role of promoter-associated histone acetylation of Haem Oxygenase-1 (HO-1) and Giberellic Acid-Stimulated Like-1 (GSL-1) genes in heat-induced lateral root primordium inhibition in maize. Front Plant Sci 9:1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Penttinen P, Guan T, **ao J, Chen Q, Xu J, Lindström K, Zhang L, Zhang X, Strobel GA (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK et al. (2003) ICE1, a regulator of cold induced transcriptome and freezing tolerance in plants. US Patent App. 10(425):913

    Google Scholar 

  • Zhu Q et al (2019) A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nat Plants 5:414–423

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong XJ et al (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks to Dr. Ruchita Dixit and Wasiullah for technical assistance in collecting literatures. The authors wish to thanks Dr. Anil K. Saxena, Director, ICAR-NBAIM, Kushmaur, Maunath Bhanjan, India, for providing technical support during preparation of manuscript. Our special thanks go to Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, Kushmaur and Indian Council of Agricultural Research, Government of India, for providing financial support to Udai B. Singh to carry out the research work.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malviya, D. et al. (2020). Microbial Interactions in the Rhizosphere Contributing Crop Resilience to Biotic and Abiotic Stresses. In: Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_1

Download citation

Publish with us

Policies and ethics

Navigation