Habitat-Imposed Stress Tolerance in Plants via Soil–Microbe Interactions

  • Chapter
  • First Online:
Plant Stress Mitigators

Abstract

Plants, due to their static nature, are continuously put at risk to different kinds of habitat-imposed stresses, viz. drought, salinity, temperature, etc., which constrain their productivity besides growth and development. At the same time, they keep on communicating with the soil microbiota in diverse ways under natural conditions to overcome these stresses by modifying their physiological and molecular pathways. The stress-induced changes generally alter plants’ proteomics, transcriptomics, phenomics, and metabolomics, which, in turn, affect the rhizospheric conditions due to changes in the nutrient, mineral, and metabolite composition of root and shoot exudates secreted in the soil. Flavonoids, coumarins, and other organic compounds serve as plant signals to shape the structure and composition of microbiomes that interact with the host plant. The role of several rhizospheric occupants like symbiotic fungi (Arbuscular Mycorrhiza) and bacteria (nitrogen-fixing and plant growth-promoting rhizobacteria) in plant stress tolerance by direct and indirect mechanisms has been well documented. These mechanisms in mitigating the effects of multiple stresses involve reinforcing the plant defense system (through the production of allopathic compounds, HCN, etc.), enhancing the heat shock proteins and phytohormone production along with inducing genes related to plant stress. The identification, isolation, and use of stress-tolerant rhizospheric microbial strains under habitat-imposed stress have the potential to solve the universal problem of food security and also to nourish soil health. However, the questions regarding the formulation of the effective consortia of microbes (SynComs), their synchronization, and delivery into the field to overcome the harmful effects of changing environment need to be addressed. As microbe–plant interactions are very complex, system biology may play a crucial role in enhancing our knowledge to understand these complex relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M et al (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phytobiochemical responses of plants. Plant Soil Environ 54:89–99

    Article  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V et al (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46(1):45–55

    Google Scholar 

  • Ansari FA, Ahmad I, Pichtel J (2019) Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl Soil Ecol 143:45–54

    Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sunarti S et al (2018) The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front Plant Sci 9:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S et al (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Sarkar S, Orellana SC, Bandopadhyay R (2019) Exopolysaccharides and biofilms in mitigating salinity stress: the biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Microorganisms in saline environments: strategies and functions, pp 133–146

    Chapter  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Basheer AA (2018) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30(4):402–406

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Bhandari K, Nayyar H (2014) Low temperature stress in plants: an overview of roles of cryoprotectants in defense in physiological mechanisms and adaptation strategies in plants under changing environment, vol 1, 3rd edn. Springer, New York, pp 193–265

    Google Scholar 

  • Bhise KK, Bhagwat PK, Dandge PB (2017) Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3. Biotech 7:105

    Google Scholar 

  • Campos F, Cuevas-Velazquez C et al (2013) Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Gen Genomics 288:503–517

    Article  CAS  Google Scholar 

  • Cao S, Du XH, Li LH, Liu YD, Zhang L, Pan X et al (2017) Overexpression of populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russ J Plant Physiol 64:224–234

    Article  CAS  Google Scholar 

  • Carpena RO, Vazquez S, Esteban E, Fernandez-Pascual M, Rosario de Felipe M, Zornoza P (2003) Cadmium–stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 161:911

    Article  CAS  Google Scholar 

  • Chan Z et al (2016) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol 209:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Chang P et al (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16(7–12):1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2011) Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, Croatia, pp 283–308

    Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Dąbrowska G, Hrynkiewicz K, Trejgell A, Baum C (2017) The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. Int J Phytoremediation 19:597–604

    Article  PubMed  CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108

    Article  CAS  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S et al (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N et al (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83(4–5):475–488

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:563–571

    Article  Google Scholar 

  • El-Afry MM, El-Nady MF, Abdelmonteleb EB, Metwaly MMS (2012) Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. Acta Biol Szeged 56(2):165–174

    Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress condition. Probiot Plant Health:163–200

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Farago ME, Mullen WA (1979) A possible copper–proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:L93–L94

    Article  CAS  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29:409–420

    Article  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179

    Article  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    Article  CAS  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gil-Amado JA, Gomez-Jimenez MC (2012) Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. Planta 235:1221–1237

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3Biotech 5:355–377

    Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501:S1. https://doi.org/10.1038/501S1a

    Article  CAS  PubMed  Google Scholar 

  • Guo YP, Guo DP, Zhou HF, Hu MJ, Shen YG (2006) Photoinhibition and xanthophyll cycle activity in bayberry (Myrica rubra) leaves induced by high irradiance. Photosynthetica 44:439–446

    CAS  Google Scholar 

  • Gupta S et al (2020) Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions. Plant Soil. https://doi.org/10.1007/s11104-020-04618-w

  • Guy C, Haskell D et al (1998) Association of proteins with the stress 70 molecular chaperones at low temperature: evidence for the existence of cold labile proteins in spinach. Cryobiology 36(4):301–314

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, vanElsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trend Microbiol 16(10):463–471

    Article  CAS  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, **ao L, Zhong T et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hemantaranjan A, Bhanu AN et al (2014) Heat stress responses and thermotolerance. Adv Plant Agric Res 1(3):62–70

    Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogenuse efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fijuta M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  CAS  Google Scholar 

  • Huang Y, Tao S, Chen YJ (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17(2):276–280

    CAS  Google Scholar 

  • Ilhan S, Ozdemir F, Bor M (2015) Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf. Plant Biol 17:402–407

    Article  CAS  PubMed  Google Scholar 

  • Islam RM, Baohua F et al (2018) Role of abscisic acid in thermal acclimation of plants. J Plant Biol 61(5):255–264

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plant 20:201–207

    Article  CAS  Google Scholar 

  • Jiang QY, Zhuo F, Long SH et al (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262

    Article  CAS  Google Scholar 

  • Kamanga R, Mndala L (2019) Crop abiotic stresses and nutrition of harvested food crops: a review of impacts, interventions and their effectiveness. Afr J Agric Res 14(3):118–135

    Article  CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL et al (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim NH, Kim BS, Hwang BK (2013) Pepper arginine decarboxylase is required for polyamine and gamma-aminobutyric acid signaling in cell death and defense response. Plant Physiol 162:2067–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca S, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11:1216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurepin LV, Qaderi MM et al (2008) A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul 55:165–167

    Article  CAS  Google Scholar 

  • Laloum T, Martín G, Duque P (2018) Alternative splicing control of abiotic stress responses. Trends Plant Sci 23:140–150

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Article  CAS  Google Scholar 

  • Li S, Li F, Wang J, Zhang WEN, Meng Q, Chen THH, Yang X (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34(11):1931–1943

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim JH, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16:15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Article  Google Scholar 

  • Liu H et al (2017) Effects of Jasmonic acid signalling on the wheat microbiome differ between body sites. Sci Rep 7:41766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y et al (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  CAS  PubMed  Google Scholar 

  • Manzi M, Lado J, Rodrigo MJ, Arbona V, Gómez-Cadenas A (2016) ABA accumulation in water-stressed citrus roots does not rely on carotenoid content in this organ. Plant Sci 252:151–161

    Article  CAS  PubMed  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  CAS  Google Scholar 

  • Massad TJ, Dyer LA, Vega CG (2012) Cost of defense and a test of the carbon-nutrient balance and growth-differentation balance hypotheses for two co-occurring classes of plant defense. PLoS One 7:7554

    Article  CAS  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematovn SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • McLellan CA et al (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145(1):174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RK et al (2015) Isolation of low tempertutre surviving plant growth promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Article  Google Scholar 

  • Messedi D, Slama I, Labidi N, Ghnaya T, Savouré A, Soltani A, Abdelly C (2006) Proline metabolism in Sesuvium portulacastrum under salinity and drought. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser, Basel, pp 65–72

    Chapter  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar T, Rehman S, Smith D et al (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12

    Google Scholar 

  • Mustafa S, Kabir S, Shabbir U, Batool R (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78:115–123

    Article  CAS  Google Scholar 

  • Mustafavi SH, Badi HN, Sekara A, Al E (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:102

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Article  CAS  Google Scholar 

  • Naveed M, Bukhari SS, Mustafa A, Ditta A, Alamri S, El-Esawi MA, Rafique M, Ashraf S, Siddiqui MH (2020) Mitigation of nickel toxicity and growth promotion in sesame through the application of a bacterial endophyte and zeolite in nickel contaminated soil. Int J Environ Res Public Health 17(23):8859

    Article  CAS  PubMed Central  Google Scholar 

  • Nawaz K et al (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9(34):5475–5480

    CAS  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida H, Suzaki T (2018) Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol 44:129–136

    Article  CAS  PubMed  Google Scholar 

  • Nonnoi F, Chinnaswamy A, de la Torre VSG, de la Pẽna TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Noori F, Etesami H, Zarini HN et al (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138

    Article  CAS  PubMed  Google Scholar 

  • Olien CR, Smith MN (1977) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz N, Armadaa E, Duque E, Roldánc A, Azcóna R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y et al (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25(2):609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XY, Wang GX, Yang HM, Wei XP (2003) Effect of water defi cits on within-plot variability in growth and grain yield of spring wheat in north west china. Field Crop Res 80:195–205

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Penna S (2003) Building stress tolerance through overproducing trehalose in transgenic plants. Trends Plant Sci 8:355–357

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Borpatragohain B, Sahoo S (2019) Role of plant-microbe interactions on abiotic stress tolerance in plants: a review. Int J Agric Plant Sci 1(4):25–31

    Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9:560

    Article  CAS  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM et al (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452

    Article  PubMed  CAS  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  PubMed  Google Scholar 

  • Saba H, Jyoti P, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Int Res J Environ Sci 2(1):74–78

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M et al (2014) A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Sig Behav 9:e29377

    Article  CAS  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8(4):e00764–e00717

    Article  PubMed  PubMed Central  Google Scholar 

  • Saradhi PP, AliaArora S, Prasad KVSK (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P et al (2007) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4:62–67

    Google Scholar 

  • Setiawati T, Ayalla A, Nurzaman MA, Mutaqin Z (2018) Influence of light intensity on leaf photosynthetic traits and alkaloid content of Kiasahan (Tetracera scandens L.). IOP Conf Ser Earth Environ Sci 166:12–25

    Article  Google Scholar 

  • Shafiei Masouleh SS, Sassine Y, Aldine NJ (2019) The role of organic solutes in the osmotic adjustment of chilling stressed plants (vegetable, ornamental and crop plants). Ornam Hortic 25(4):434–442

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress— induced anatomical changes in higher plants. Crit Rev Biol 331:215–225

    Google Scholar 

  • Shao CG, Wang H, Yu-Fen BI (2015) Relationship between endogenous polyamines and tolerance in Medicago sativa L. under heat stress. Acta Agrestia Sin 23:1214–1219

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:217037

    Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira V, De Vita AM et al (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tissue Organ Cult 114:351–364

    Article  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Singh A (2016) Varied responses and tolerant mechanisms towards salinity stress in plants. Int J Plant Soil Sci 11(5):1–13

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Singhal RK, Kumar V, Kumar S, Choudhary BL (2017) High light stress response and tolerance mechanism in plant. Interdisc J Contemp Res 4(1)

    Google Scholar 

  • Slama I, Abdelly C et al (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Mao Y et al (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acid Res 29:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in develo** sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Tajti J, Janda T, Majláth I, Szalai G, Pál M (2018) Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Safety 148:546–554

    Article  CAS  PubMed  Google Scholar 

  • Takács T, Vörös I (2003) Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agron Hung 51:347–354

    Article  Google Scholar 

  • TerHorst CP, Lennon JT, Lau JA (2014) The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc R Soc B Biol Sci 281(1785):20140028

    Article  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops. Environment 67:429–443

    CAS  Google Scholar 

  • Tian J (2012) Physiological regulation function and proteomics research of exogenous spermidine on alleviating high temperature stress the of cucumber seedlings. Nan**g Agric Univ:7–21

    Google Scholar 

  • Timm CM, Carter KR et al (2018) Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. mSystems 3:e00070–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression, a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tisi A, Federico R, Moreno S et al (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Singh Chauhan P, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuteja N (2009) Integrated calcium signaling in plants. In: Baluska F, Mancuso S (eds) Signaling in plants. Springer, Heidelberg, Germany, pp 29–49

    Chapter  Google Scholar 

  • Vymazal J, Brezinova T (2015) Accumulation of heavy metals in above-ground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    Article  CAS  Google Scholar 

  • Wallace JG, Zhang XC, Beyene Y et al (2016) Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-Saharan Africa. Crop Sci 56:2365–2378

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang GP, Li F, Zhang J et al (2010) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    Article  CAS  Google Scholar 

  • Wang Y, Mao Z, Jiang H, Zhang Z, Chen XA (2019) A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance. Biochem Biophys Res Commun 512:381–386

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics 3:113

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6:288–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2008) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Zhang M, Zhang H, Huang K, Chen M, Chen C, Yang X, Li Z, Chen H, Ma Z et al (2019) Identification and characterization of EDT1 conferring drought tolerance in rice. J Plant Biol 62:39–47

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Scholar Res Net. https://doi.org/10.5402/2011/402647

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

    PubMed  PubMed Central  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants agronomy for sustainable development. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yadav J et al (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa L.). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Yang Y, Han C, Liu Q, Bo L, Wang J (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, MinRyu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Briseño JA, de Jiménez ES (2016) A LEA 4 protein up-regulated by ABA is involved in drought response in maize roots. Mol Biol Rep 43:221–228

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Cai J, Wollenweber B, Liu F, Dai T, Cao W, Jiang D (2013) Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J Cereal Sci 57:134–140

    Article  CAS  Google Scholar 

  • Zhang QH, Wang M et al (2015) PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis. J Exp Bot 66:5911–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao SZ et al (2011) Growth regulator-induced betacyanin accumulation and dopa-4,5-dioxygenase (DODA) gene expression in euhalophyte Suaeda salsa calli in vitro. Cell Dev Biol Plant 47:391–398

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoratti L, Karppinen K, Escobar AL, Häggman HM (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5(534):534

    PubMed  PubMed Central  Google Scholar 

  • Zwicke M, Picon-Cochard C, Morvan-Bertrand A et al (2015) What functional strategies drive drought survival and recovery of perennial species from upland grassland? Ann Bot 116:1001–1015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Arora, B., Ram, K. (2022). Habitat-Imposed Stress Tolerance in Plants via Soil–Microbe Interactions. In: Vaishnav, A., Arya, S., Choudhary, D.K. (eds) Plant Stress Mitigators. Springer, Singapore. https://doi.org/10.1007/978-981-16-7759-5_10

Download citation

Publish with us

Policies and ethics

Navigation