Fixation in Revision ACL Reconstruction

  • Chapter
  • First Online:
Revision ACL Reconstruction

Abstract

Anterior cruciate ligament (ACL) revision reconstructions are likely to increase as the number of primary ACL reconstructions increases. Poor prior tunnel locations and tunnel expansion can complicate fixation of the graft in a revision setting, and thus the surgeon must be familiar with multiple different fixation methods, their advantages, disadvantages, and potential complications. This chapter reviews the various fixation types that can be used with soft tissue-to-bone or bone-to-bone fixation, the biomechanical properties of several common fixation devices, and offers technical advice for hardware removal and graft fixation in the setting of nearby prior tunnels or tunnel expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fox JA, Pierce M, Bojchuk J, Hayden J, Bush-Joseph CA, Bach Jr BR. Revision anterior cruciate ligament reconstruction with nonirradiated fresh-frozen patellar tendon allograft. Arthroscopy. 2004;20:787–94.

    PubMed  Google Scholar 

  2. Trojani C, Sbihi A, Djian P, et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc. 2011;19:196–201.

    Article  PubMed  Google Scholar 

  3. Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med. 2010;38:1987–96.

    Article  PubMed  Google Scholar 

  4. Wright RW, Huston LJ, Spindler KP, et al. Descriptive epidemiology of the multicenter ACL revision study (MARS) cohort. Am J Sports Med. 2010;38:1979–86.

    Article  PubMed  Google Scholar 

  5. Laxdal G, Kartus J, Eriksson BI, Faxen E, Sernert N, Karlsson J. Biodegradable and metallic interference screws in anterior cruciate ligament reconstruction surgery using hamstring tendon grafts: prospective randomized study of radiographic results and clinical outcome. Am J Sports Med. 2006;34:1574–80.

    Article  PubMed  Google Scholar 

  6. Clatworthy MG, Annear P, Bulow JU, Bartlett RJ. Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc. 1999;7:138–45.

    Article  PubMed  CAS  Google Scholar 

  7. Fules PJ, Madhav RT, Goddard RK, Newman-Sanders A, Mowbray MA. Evaluation of tibial bone tunnel enlargement using MRI scan cross-sectional area measurement after autologous hamstring tendon ACL replacement. Knee. 2003;10:87–91.

    Article  PubMed  Google Scholar 

  8. Schultz WR, McKissick RC, DeLee JC. Tibial tunnel widening after hamstring tendon anterior cruciate ligament reconstruction: the effect of supplemental aperture fixation with autogenous bone cores. Am J Sports Med. 2007;35:1725–30.

    Article  PubMed  Google Scholar 

  9. Moisala AS, Jarvela T, Paakkala A, Paakkala T, Kannus P, Jarvinen M. Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc. 2008;16:1080–6.

    Article  PubMed  Google Scholar 

  10. Jarvela T, Moisala AS, Paakkala T, Paakkala A. Tunnel enlargement after double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study. Arthroscopy. 2008;24:1349–57.

    Article  PubMed  Google Scholar 

  11. Siebold R. Observations on bone tunnel enlargement after double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2007;23:291–8.

    Article  PubMed  Google Scholar 

  12. Marchant Jr MH, Willimon SC, Vinson E, Pietrobon R, Garrett WE, Higgins LD. Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18:1059–64.

    Article  PubMed  Google Scholar 

  13. Maak TG, Voos JE, Wickiewicz TL, Warren RF. Tunnel widening in revision anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2010;18:695–706.

    PubMed  Google Scholar 

  14. Battaglia TC, Miller MD. Management of bony deficiency in revision anterior cruciate ligament reconstruction using allograft bone dowels: surgical technique. Arthroscopy. 2005;21:767.

    PubMed  Google Scholar 

  15. Pena F, Grontvedt T, Brown GA, Aune AK, Engebretsen L. Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med. 1996;24(3):329–34.

    Article  PubMed  CAS  Google Scholar 

  16. Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15:225–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rowden NJ, Sher D, Rogers GJ, Schindhelm K. Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. Am J Sports Med. 1997;25:472–8.

    Article  PubMed  CAS  Google Scholar 

  18. Spencer EE, Chissell HR, Spang JT, Feagin Jr JA, Manoff EM, Rohatgi SD. Behavior of sutures used in anterior cruciate ligament reconstructive surgery. Knee Surg Sports Traumatol Arthrosc. 1996;4:84–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:635–40.

    Article  PubMed  Google Scholar 

  20. Ellis B, Weiss J. Cyclic stability of the Smith and Nephew continuous loop Endobutton when used for hamstring-grafted ACL reconstruction. In: Internal Study on file at Smith & Nephew Endoscopy. Andover, MA; 1998.

    Google Scholar 

  21. Fabbriciani C, Milano G, Fadda S. Comparison of different femoral fixation devices for ACL reconstruction with hamstring tendon grafts. A biomechanical study on porcine knees: University of Sassari; Sassari, Italy, on File. Arthrex Product literature 2001; Naples, FL.

    Google Scholar 

  22. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med. 2003;31:174–81.

    PubMed  Google Scholar 

  23. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy. 2006;22:660–8.

    Article  PubMed  Google Scholar 

  24. Fabbriciani C, Mulas PD, Ziranu F, Deriu L, Zarelli D, Milano G. Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. Knee. 2005;12:135–8.

    Article  PubMed  Google Scholar 

  25. To JT, Howell SM, Hull ML. Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy. 1999;15:379–87.

    Article  PubMed  CAS  Google Scholar 

  26. Brown C, Sklar J. Endoscopic anterior cruciate ligament reconstruction using quadrupled hamstring tendons and endobutton femoral fixation. Tech Orthop. 1998;13:281.

    Article  Google Scholar 

  27. Goradia V, Rochat M, Grana W. Strength of ACL reconstructions using semitendinosus tendon grafts. J Okla State Med Assoc. 1998;91:275.

    PubMed  CAS  Google Scholar 

  28. Athanasios K. Arthrex Biointerference screw. Arthrex Product literature. Naples, FL: Arthrex, Inc.; 2009.

    Google Scholar 

  29. Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med. 2001;29:751–61.

    PubMed  CAS  Google Scholar 

  30. Steiner ME, Hecker AT, Brown Jr CH, Hayes WC. Anterior cruciate ligament graft fixation. Comparison of hamstring and patellar tendon grafts. Am J Sports Med. 1994;22:240–6; discussion 6–7.

    Article  PubMed  CAS  Google Scholar 

  31. Ivey M, Li F. Tensile strength of soft tissue fixation about the knee. Am J Knee Surg. 1991;4:18.

    Google Scholar 

  32. Sklar J. Bio-Intrafix Cadaver testing. In: Mitek product literature. Springfield, MA: Mitek, Inc.; 2004.

    Google Scholar 

  33. Caborn DN, Brand Jr JC, Nyland J, Kocabey Y. A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw. Am J Sports Med. 2004;32:956–61.

    Article  PubMed  Google Scholar 

  34. Magen HE, Howell SM, Hull ML. Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med. 1999;27:35–43.

    PubMed  CAS  Google Scholar 

  35. Ferretti A, Conteduca F, Morelli F, Ticca L, Monaco E. The Evolgate: a method to improve the pullout strength of interference screws in tibial fixation of anterior cruciate ligament reconstruction with doubled gracilis and semitendinosus tendons. Arthroscopy. 2003;19:936–40.

    Article  PubMed  Google Scholar 

  36. Novak PJ, Wexler GM, Williams Jr JS, Bach Jr BR, Bush-Joseph CA. Comparison of screw post fixation and free bone block interference fixation for anterior cruciate ligament soft tissue grafts: biomechanical considerations. Arthroscopy. 1996;12:470–3.

    Article  PubMed  CAS  Google Scholar 

  37. L’Insalata JC, Klatt B, Fu FH, Harner CD. Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc. 1997;5:234–8.

    Article  PubMed  Google Scholar 

  38. Fauno P, Kaalund S. Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy. 2005;21:1337–41.

    Article  PubMed  Google Scholar 

  39. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP. Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18:124–35.

    Article  PubMed  Google Scholar 

  40. Colvin A, Sharma C, Parides M, Glashow J. What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res. 2011;469:1075–81.

    Article  PubMed  Google Scholar 

  41. Brand Jr JC, Nyland J, Caborn DN, Johnson DL. Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy. 2005;21:911–6.

    Article  PubMed  Google Scholar 

  42. Hoffmann RF, Peine R, Bail HJ, Sudkamp NP, Weiler A. Initial fixation strength of modified patellar tendon grafts for anatomic fixation in anterior cruciate ligament reconstruction. Arthroscopy. 1999;15:392–9.

    Article  PubMed  CAS  Google Scholar 

  43. Shen C, Jiang SD, Jiang LS, Dai LY. Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy. 2010;26:705–13.

    Article  PubMed  Google Scholar 

  44. Hapa O, Barber FA. ACL fixation devices. Sports Med Arthrosc. 2009;17:217–23.

    Article  PubMed  Google Scholar 

  45. Micucci CJ, Frank DA, Kompel J, Muffly M, Demeo PJ, Altman GT. The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy. 2010;26:1105–10.

    Article  PubMed  Google Scholar 

  46. Caborn DN, Nyland J, Selby J, Tetik O. Biomechanical testing of hamstring graft tibial tunnel fixation with bioabsorbable interference screws. Arthroscopy. 2003;19:991–6.

    Article  PubMed  Google Scholar 

  47. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Sudkamp NP. The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med. 2000;28:356–9.

    PubMed  CAS  Google Scholar 

  48. Randall RL, Wolf EM, Heilmann MR, Lotz J. Comparison of bone-patellar tendon-bone interference screw fixation and hamstring transfemoral screw fixation in anterior cruciate ligament reconstruction. Orthopedics. 1999;22:587–91.

    PubMed  CAS  Google Scholar 

  49. Harilainen A, Sandelin J, Jansson KA. Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy. 2005;21:25–33.

    Article  PubMed  Google Scholar 

  50. Brown Jr CH, Wilson DR, Hecker AT, Ferragamo M. Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy. 2004;20:922–35.

    PubMed  Google Scholar 

  51. Milano G, Mulas PD, Ziranu F, Deriu L, Fabbriciani C. Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: a mechanical analysis in porcine knees. Knee Surg Sports Traumatol Arthrosc. 2007;15:733–8.

    Article  PubMed  Google Scholar 

  52. Plaweski S, Rossi J, Merloz P. Anterior cruciate ligament reconstruction: assessment of the hamstring autograft femoral fixation using the EndoButton CL. Orthop Traumatol Surg Res. 2009;95:606–13.

    Article  PubMed  CAS  Google Scholar 

  53. Monaco E, Labianca L, Speranza A, et al. Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Orthop Sci. 2010;15:125–31.

    Article  PubMed  CAS  Google Scholar 

  54. Hill PF, Russell VJ, Salmon LJ, Pinczewski LA. The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med. 2005;33:94–101.

    Article  PubMed  Google Scholar 

  55. Tetsumura S, Fujita A, Nakajima M, Abe M. Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci. 2006;11:278–82.

    Article  PubMed  Google Scholar 

  56. Klein SA, Nyland J, Kocabey Y, Wozniak T, Nawab A, Caborn DN. Tendon graft fixation in ACL reconstruction: in vitro evaluation of bioabsorbable tenodesis screw. Acta Orthop Scand. 2004;75:84–8.

    Article  PubMed  Google Scholar 

  57. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP. Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med. 2001;29:67–71.

    PubMed  CAS  Google Scholar 

  58. Yoo JC, Ahn JH, Kim JH, et al. Biomechanical testing of hybrid hamstring graft tibial fixation in anterior cruciate ligament reconstruction. Knee. 2006;13:455–9.

    Article  PubMed  Google Scholar 

  59. Bartz RL, Mossoni K, Tyber J, Tokish J, Gall K, Siparsky PN. A biomechanical comparison of initial fixation strength of 3 different methods of anterior cruciate ligament soft tissue graft tibial fixation: resistance to monotonic and cyclic loading. Am J Sports Med. 2007;35:949–54.

    Article  PubMed  Google Scholar 

  60. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med. 2003;31:182–8.

    PubMed  Google Scholar 

  61. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W. Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws. Arthroscopy. 2006;22:1204–10.

    Article  PubMed  Google Scholar 

  62. Shellock FG, Mink JH, Curtin S, Friedman MJ. MR imaging and metallic implants for anterior cruciate ligament reconstruction: assessment of ferromagnetism and artifact. J Magn Reson Imaging. 1992;2:225–8.

    Article  PubMed  CAS  Google Scholar 

  63. Safran MR, Harner CD. Technical considerations of revision anterior cruciate ligament surgery. Clin Orthop Relat Res. 1996;325:50–64.

    Google Scholar 

  64. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    Article  PubMed  CAS  Google Scholar 

  65. Caborn DN, Urban Jr WP, Johnson DL, Nyland J, Pienkowski D. Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy. 1997;13:229–32.

    Article  PubMed  CAS  Google Scholar 

  66. Johnson LL, vanDyk GE. Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy. 1996;12:452–6.

    Article  PubMed  CAS  Google Scholar 

  67. Zantop T, Welbers B, Weimann A, et al. Biomechanical evaluation of a new cross-pin technique for the fixation of different sized bone-patellar tendon-bone grafts. Knee Surg Sports Traumatol Arthrosc. 2004;12:520–7.

    Article  PubMed  Google Scholar 

  68. Piltz S, Strunk P, Meyer L, Plitz W, Lob G. Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone. Knee Surg Sports Traumatol Arthrosc. 2004;12:376–83.

    Article  PubMed  Google Scholar 

  69. Gerich TG, Cassim A, Lattermann C, Lobenhoffer HP. Pullout strength of tibial graft fixation in anterior cruciate ligament replacement with a patellar tendon graft: interference screw versus staple fixation in human knees. Knee Surg Sports Traumatol Arthrosc. 1997;5:84–8.

    Article  PubMed  CAS  Google Scholar 

  70. Malek MM, DeLuca JV, Verch DL, Kunkle KL. Arthroscopically assisted ACL reconstruction using central third patellar tendon autograft with press fit femoral fixation. Instr Course Lect. 1996;45:287–95.

    PubMed  CAS  Google Scholar 

  71. Georgoulis AD, Papageorgiou CD, Makris CA, Moebius UG, Soucacos PN. Anterior cruciate ligament reconstruction with the press-fit technique. 2–5 years followed-up of 42 patients. Acta Orthop Scand Suppl. 1997;275:42–5.

    PubMed  CAS  Google Scholar 

  72. Dworsky BD, Jewell BF, Bach Jr BR. Interference screw divergence in endoscopic anterior cruciate ligament reconstruction. Arthroscopy. 1996;12:45–9.

    Article  PubMed  CAS  Google Scholar 

  73. Bach Jr BR. Revision anterior cruciate ligament surgery. Arthroscopy. 2003;19 Suppl 1:14–29.

    PubMed  Google Scholar 

  74. Barber FA, Spruill B, Sheluga M. The effect of outlet fixation on tunnel widening. Arthroscopy. 2003;19:485–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. Mall MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mall, N.A., Heard, W.M.R., Verma, N.N., Bach, B.R. (2014). Fixation in Revision ACL Reconstruction. In: Marx, R. (eds) Revision ACL Reconstruction. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0766-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0766-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0765-2

  • Online ISBN: 978-1-4614-0766-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation