Log in

Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

This biomechanical study compares the initial fixation strength of a novel bioabsorbable two-shell expansion bolt (EB) with that of a well-established interference-screw technique in bone–patellar tendon–bone (BPTB) reconstruction in a calf model. Thirty tibia plateaus (age 5–6 months) were assigned to three groups: In groups I and II, trapezoidal bone plugs of BPTB grafts were fixed with bioabsorbable poly-L-lactide interference screws (8×23 mm) or titanium interference screws (8×25 mm) respectively. In group III, semicircular grafts were fixed using bioabsorbable poly-D, L-lactide expansion bolts (5.8/8.7×10×35 mm). The tensile axis was parallel to the bone tunnel, and the construction was loaded until failure applying a displacement rate of 1 mm per second. In group II the mean ultimate loads to failure (713 N±218 N) were found to be significantly higher than those of groups I (487 N±205 N) and III (510 N±133 N). Measurement of stiffness showed 45 N/mm±13.3 in group I, 58 N/mm±17.4 in group II and 46 N/mm±6.9 in group III, and did not demonstrate significant differences. We found a correlation between insertion torque and wedge insertion force and ultimate loads to failure in all groups ( r =0.53 in group I, r =0.54 in group II, and r =0.57 in group III). Cross-section planes of bone tunnel increased by 51%, 30% and 31% respectively, following insertion of screws or expansion of bolts ( p <0.05). We conclude that ACL graft fixation by means of the presented expansion bolt demonstrates a fixation strength similar to the established bioabsorbable screw fixation, and is a reasonable alternative fixation method, especially since some of the specific pitfalls of screw fixation can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A,B

Similar content being viewed by others

References

  1. Abate JA, Fadale PD, Hulstyn MJ, Walsh WR (1998) Initial fixation strength of polylactic acid interference screws in anterior cruciate ligament reconstruction. Arthroscopy 14:278–284

    CAS  PubMed  Google Scholar 

  2. Bach BR (1989) Potential pitfalls of Kurosaka screw interference fixation for ACL surgery. Am J Knee Surg 2:76–82

    Google Scholar 

  3. Barber FA, Elrod BF, McGuire DA, Paulos LE (1995) Preliminary results of an absorbable interference screw. Arthroscopy 11:537–548

    CAS  PubMed  Google Scholar 

  4. Benson ER, Barnett PR (1998) A delayed transverse avulsion fracture of the superior pole of the patella after anterior cruciate ligament reconstruction. Arthroscopy 14:85–88

    CAS  PubMed  Google Scholar 

  5. Boszotta H, Anderl W (2001) Primary stability with tibial press-fit fixation of patellar ligament graft: An experimental study in ovine knees. Arthroscopy 17:963–970

    Article  PubMed  Google Scholar 

  6. Brodie JT, Torpey BM, Donald GD 3rd, Bade HA 3rd (1996) Femoral interference screw placement through the tibial tunnel: a radiographic evaluation of interference screw divergence angles after endoscopic anterior cruciate ligament reconstruction. Arthroscopy 12:435–440

    CAS  PubMed  Google Scholar 

  7. Brown CH, Carson EW (1999) Revision anterior cruciate ligament surgery. Clin Sports Med 18:109–171

    PubMed  Google Scholar 

  8. Brown CH, Hecker AT, Hipp JA, Myers ER, Hayes WC (1993) The biomechanics of interference screw fixation of patellar-tendon anterior cruciate ligament grafts. Am J Sports Med 21:880–886.

    PubMed  Google Scholar 

  9. Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference-screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel–bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    CAS  PubMed  Google Scholar 

  10. Brownstein B, Bronner S (1997) Patella fractures associated with accelerated ACL rehabilitation in patients with autogenous patella tendon reconstructions. J Orthop Sports Phys Ther 26:168–172

    CAS  PubMed  Google Scholar 

  11. Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79:1556–1576

    PubMed  Google Scholar 

  12. Getelman MH, Friedman MJ (1999) Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 7:189–198

    CAS  PubMed  Google Scholar 

  13. Hackl W, Benedetto KP, Hoser C, Künzel KH, Fink C (2000) Is screw divergence in femoral bone–tendon–bone graft fixation avoidable in anterior cruciate ligament reconstruction using a single-incision technique? A radiographically-controlled cadaver study. Arthroscopy 16:640–647

    Article  CAS  PubMed  Google Scholar 

  14. Hackl W, Fink C, Benedetto KP, Hoser C (2000) Transplantatfixation bei der vorderen Kreuzbandrekonstruktion: Metall- vs bioresorbierbare Polyglykonat-Interferenzschraube—Eine prospektiverandomisierte Studie von 40 Patienten [Transplant fixation by anterior cruciate ligament reconstruction. Metal vs bioabsorbable polyglyconate interference screw. A prospective randomized study of 40 patients]. Unfallchirurg 103:468–474

    CAS  PubMed  Google Scholar 

  15. Hoffmann RF, Peine R, Bail HJ, Südkamp NP, Weiler A (1999) Initial fixation strength of modified patellar tendon grafts for anatomic fixation in anterior cruciate ligament reconstruction. Arthroscopy 15:392–399

    PubMed  Google Scholar 

  16. Hulstyn M, Fadale PD, Abate J, Walsh WR (1993) Biomechanical evaluation of interference screw fixation in a bovine patellar bone–tendon–bone autograft complex for anterior cruciate ligament reconstruction. Arthroscopy 9:417–424

    CAS  PubMed  Google Scholar 

  17. Johnson LL, van Dyk GE (1994) Arthroscopically-monitored ACL reconstruction: compaction drilling and compression screw. In: Feagin JAJ (ed) The crucial ligaments: diagnosis and treatment of ligamentous injuries about the knee, 2nd edn. Churchill Livingstone, New York, pp 555–593

  18. Jomha NM, Raso VJ, Leung P (1993) Effect of varying angles on the pullout strength of interference screw fixation. Arthroscopy 9:580–583

    CAS  PubMed  Google Scholar 

  19. Kohn D, Rose C (1994) Primary stability of interference screw fixation. Influence of screw diameter and insertion torque. Am J Sports Med 22:334–338

    PubMed  Google Scholar 

  20. Kousa P, Järvinen TL, Kannus P, Ahvenjärvi P, Kaikkonen A, Järvinen M (2001) A bioabsorbable plug in bone–tendon–bone reconstruction of the anterior cruciate ligament: introduction of a novel fixation technique. Arthroscopy 17:144–150

    CAS  PubMed  Google Scholar 

  21. Kousa P, Järvinen TL, Pohjonen T, Kannus P, Kotikoski M, Järvinen M (1995) Fixation strength of a biodegradable screw in anterior cruciate ligament reconstruction. J Bone Joint Surg Br 77:901–905

    CAS  PubMed  Google Scholar 

  22. Lemos MJ, Albert J, Simon T, Jackson DW (1993) Radiographic analysis of femoral interference-screw placement during ACL reconstruction: endoscopic versus open technique. Arthroscopy 9:154–158

    CAS  PubMed  Google Scholar 

  23. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    CAS  PubMed  Google Scholar 

  24. Markolf KL, Burchfield DM, Shapiro MM, Cha CW, Finerman GA, Slauterbeck JL (1996) Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part II: forces in the graft compared with forces in the intact ligament. J Bone Joint Surg Am 78:1728–1734

    CAS  PubMed  Google Scholar 

  25. Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metallic versus bioabsorbable interference screw for fixation of bone–patellar tendon–bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5:217–221

    Google Scholar 

  26. Matthews LS, Soffer SR (1989) Pitfalls in the use of interference screws for anterior cruciate ligament reconstruction: brief report. Arthroscopy 5:225–226

    CAS  PubMed  Google Scholar 

  27. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    PubMed  Google Scholar 

  28. Papageorgiou CD, Kostopoulos VK, Moebius UG, Petropoulou KA, Georgoulis AD, Soucacos PN (2001) Patellar fractures associated with medial-third bone–patellar tendon–bone autograft ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 9:151–154

    Article  CAS  PubMed  Google Scholar 

  29. Pena F, Grontvedt T, Brown GA, Aune AK, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel–bone block gap, bone mineral density, and interference. Am J Sports Med 24:329–334

    CAS  PubMed  Google Scholar 

  30. Pierz K, Baltz M, Fulkerson J (1995) The effect of Kurosaka screw divergence on the holding strength of bone–tendon–bone grafts. Am J Sports Med 23:332–335

    CAS  PubMed  Google Scholar 

  31. Rahn BA (1987) Direct and indirect bone healing after operative fracture treatment. Otolaryngol Clin North Am 20:425–440

    CAS  Google Scholar 

  32. Rupp S, Hopf T, Hess T, Seil R, Kohn DM (1999) Resulting tensile forces in the human bone–patellar tendon–bone graft: direct force measurement in vitro. Arthroscopy 15:179–184

    CAS  PubMed  Google Scholar 

  33. Rupp S, Kaltenkirchen N, Hopf T, Gleitz M (1995) Klinische Relevanz von Bohrkanalposition und Interferenzschraubenlage nach Ersatzplastik des vorderen Kreuzbandes mit Ligamentum-patellae-Transplantat [Clinical relevance of tunnel position and interference screw location after replacement-plasty of the anterior cruciate ligament with a patellar ligament transplant]. Unfallchirurg 98:650–654

    CAS  PubMed  Google Scholar 

  34. Rupp S, Seil R, Krauss PW, Kohn DM (1998) Cortical versus cancellous interference fixation for bone–patellar tendon–bone grafts. Arthroscopy 14:484–488

    CAS  PubMed  Google Scholar 

  35. Safran MR, Harner CD (1996) Technical considerations of revision anterior cruciate ligament surgery. Clin Orthop 325:50–64

    Article  PubMed  Google Scholar 

  36. Scheffler SU, Südkamp NP, Göckenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315

    Article  PubMed  Google Scholar 

  37. Schroeder FJ (1999) Reduction of femoral interference-screw divergence during endoscopic anterior cruciate ligament reconstruction. Arthroscopy 15:41–48

    CAS  PubMed  Google Scholar 

  38. Seil R, Rupp S, Krauss PW, Benz A, Kohn DM (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26:815–819

    CAS  PubMed  Google Scholar 

  39. Shapiro JD, Cohn BT, Jackson DW, Postak PD, Parker RD, Greenwald AS (1992) The biomechanical effects of geometric configuration of bone–tendon–bone autografts in anterior cruciate ligament reconstruction. Arthroscopy 8:453–458

    CAS  PubMed  Google Scholar 

  40. Shapiro JD, Jackson DW, Aberman HM, Lee TQ, Simon TM (1995) Comparison of pullout strength for seven- and nine-millimeter diameter interference-screw size as used in anterior cruciate ligament reconstruction. Arthroscopy 11:596–599

    CAS  PubMed  Google Scholar 

  41. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18:292–299

    CAS  PubMed  Google Scholar 

  42. Shellock FG, Mink JH, Curtin S, Friedman MJ (1992) MR imaging and metallic implants for anterior cruciate ligament reconstruction: assessment of ferromagnetism and artifact. J Magn Reson Imaging 2:225–228

    CAS  PubMed  Google Scholar 

  43. Stadelmaier DM, Lowe WR, Ilahi OA, Noble PC, Kohl HW (1999) Cyclic pull-out strength of hamstring tendon graft fixation with soft-tissue interference screws. Influence of screw length. Am J Sports Med 27:778–783

    CAS  PubMed  Google Scholar 

  44. Suh JS, Jeong EK, Shin KH, Cho JH, Na JB, Kim DH, Han CD (1998) Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol 171:1207–1213

    CAS  PubMed  Google Scholar 

  45. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone–patellar tendon–bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    CAS  PubMed  Google Scholar 

  46. Tuompo P, Partio EK, Jukkala-Partio K, Pohjonen T, Helevirta P, Rokkanen P (1996) Strength of the fixation of patellar tendon bone grafts using a totally absorbable self-reinforced poly-L-lactide expansion plug and screw. An experimental study in a bovine cadaver. Arthroscopy 12:422–427

    CAS  PubMed  Google Scholar 

  47. Tuompo P, Partio EK, Jukkala-Partio K, Pohjonen T, Helevirta P, Rokkanen P (1999) Comparison of polylactide screw and expansion bolt in bioabsorbable fixation with patellar tendon bone graft for anterior cruciate ligament rupture of the knee. A preliminary study. Knee Surg Sports Traumatol Arthrosc 7:296–302

    Article  CAS  PubMed  Google Scholar 

  48. Walton M (1999) Absorbable and metal interference screws: comparison of graft security during healing. Arthroscopy 15:818–826

    CAS  PubMed  Google Scholar 

  49. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Südkamp NP (2002) Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124–135

    PubMed  Google Scholar 

  50. Weiler A, Hoffmann RF, Südkamp NP, Siepe CJ, Haas NP (1999) Ersatz des vorderen Kreuzbandes: Biomechanische Untersuchungen zur Patellar- und Semitendinosussehnenverankerung mit einer Poly- (D,L-Laktid)-Interferenzschraube [Replacement of the anterior cruciate ligament. Biomechanical studies for patellar and semitendinosus tendon fixation with a poly (D,L-lactide) interference screw]. Unfallchirurg 102:115–123

    Article  CAS  PubMed  Google Scholar 

  51. Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119–126

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Arthrex Inc., Naples, FL, USA and A.M.I. GmbH, Goetzis, Austria, for providing us with the test implants. We gratefully acknowledge the help of H. Bonel M.D. and H. Hildebrandt from the Department of Diagnostic Radiology, for their valuable support with CT measurements. The paper was partially presented at the 21st Annual Meeting of the Arthroscopy Association of North America, 25–28 April 2002, Washington, DC. This work has been sponsored by funds of the University of Munich and the board of editors of the Münchner Medizinische Wochenschrift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Piltz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piltz, S., Strunk, P., Meyer, L. et al. Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone. Knee Surg Sports Traumatol Arthrosc 12, 376–383 (2004). https://doi.org/10.1007/s00167-003-0463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0463-7

Keywords

Navigation