Log in

Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: a mechanical analysis in porcine knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The aim of the present study was to evaluate the structural properties of femur–patellar tendon graft complex in anterior cruciate ligament (ACL) reconstruction using different femoral fixation devices. Type of study is biomechanical testing. An ACL reconstruction was performed on 40 cadaver porcine knees, using patellar tendon (PT) graft. Specimens were divided into four groups according to the femoral fixation: interference absorbable screw (Group A), metallic setscrew (Group B), absorbable pins (Group C), and a combination of metallic setscrew and pin (Group D). Other ten knees were used as controls. On each sample, a cyclic loading test, then a load-to-failure test were performed. Elongation after 1,000 loading cycles, ultimate failure load, yield load, stiffness, deformation at the yield point, and mode of failure were recorded. Kruskal–Wallis test and Tukey test were used to compare the differences between groups. The lowest mean elongation after 1,000 load cycles was observed for Group B (1.7 ± 1.4 mm) and D (1.2 ± 0.3 mm). Ultimate failure load of Group D (1,021.8 ± 199.4 N) was comparable with that of normal ACL (1,091.2 ± 193.3 N) and PT graft (1,140.6 ± 285.7 N). All other groups were lower than the controls. For mean stiffness, all the groups, excepting for Group D (172.8 ± 40.4 N/mm), were significantly lower than PT control group (216 ± 78.4 N/mm). Mode of failure was graft pullout for Groups A and B, distal pin breakage for Group C, and midsubstance graft rupture in 80% of the cases for Group D. Only combined compression and suspension fixation did not show significantly different structural properties in comparison with normal ACL and PT graft. Furthermore, it showed no risk of graft pullout or hardware breakdown in comparison with other fixation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown CH Jr, Hecker AT, Hipp JA et al (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21:880–886

    PubMed  Google Scholar 

  2. Brown G, Pena F, Grontvedt T et al (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    Article  PubMed  CAS  Google Scholar 

  3. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation. The effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524–529

    Article  PubMed  CAS  Google Scholar 

  4. Caborn DN, Urban WP Jr, Johnson DL et al (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone–patellar tendon–bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13:229–232

    Article  PubMed  CAS  Google Scholar 

  5. Camillieri G, McFarland EG, Jasper LE, Belkoff SM, Kim TK, Rauh PB, Mariani PP (2004) A biomechanical evaluation of transcondylar femoral fixation of anterior cruciate ligament grafts. Am J Sports Med 32:950–955

    Article  PubMed  Google Scholar 

  6. Chang HC, Nyland J, Nawab A, Burden R, Caborn DN (2005) Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35 mm delta screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 33:1057–1064

    Article  PubMed  Google Scholar 

  7. Cooper DE, Deng XH, Burstein AL (1993) The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med 21:818–824

    PubMed  CAS  Google Scholar 

  8. Graf B, Uhr F (1988) Complications of intra-articular cruciate reconstruction. Clin Sports Med 7:835–848

    PubMed  CAS  Google Scholar 

  9. Hackl W, Fink C, Benedetto KP, Hoser C (2000) Transplant fixation by anterior cruciate ligament reconstruction. Metal vs. bioabsorbable polyglyconate interference screw. A prospective randomized study of 40 patients. Unfallchirurg 103:468–474

    Article  PubMed  CAS  Google Scholar 

  10. Hammond GW, Armstrong KL, McGarry MH, Lee TQ (2006) Hybrid fixation improves structural properties of a free tendon anterior cruciate ligament reconstruction. Arthroscopy 22:781–786

    Article  PubMed  Google Scholar 

  11. Johnson LL, Van Dyk GE (1996) Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 12:452–456

    Article  PubMed  CAS  Google Scholar 

  12. Jomha NM Raso VJ, Leung P (1993) Effect of varying angles on the pullout strength of interference screw fixation. Arthroscopy 9:580–583

    Article  Google Scholar 

  13. Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151

    Article  PubMed  Google Scholar 

  14. Kohn D, Rose C (1994) Primary stability of interference screw fixation: influence of screw diameter and insertion torque. Am J Sports Med 22:334–338

    PubMed  CAS  Google Scholar 

  15. Kotani A, Ishii Y (2001) Reconstruction of the anterior cruciate ligament using poly-l-lactide interference screws or titanium screws: a comparative study. Knee 8:311–315

    Article  PubMed  CAS  Google Scholar 

  16. Kousa P, Jarvinen TL, Kannus P et al (2001) Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 29:420–425

    PubMed  CAS  Google Scholar 

  17. Mariani PP, Camillieri G, Margheritini F (2001) Transcondylar screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 17:717–723

    Article  PubMed  CAS  Google Scholar 

  18. Matthews LS, Soffer SR (1989) Pitfalls in the use of interference screws for anterior cruciate ligament reconstruction: brief report. Arthroscopy 5:225–226

    Article  PubMed  CAS  Google Scholar 

  19. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660–668

    Article  PubMed  Google Scholar 

  20. Nakano H, Yasuda K, Tohyama H, Yamanaka M, Wada T, Kaneda K (2000) Interference screw fixation of doubled flexor tendon graft in anterior cruciate ligament reconstruction—biomechanical evaluation with cyclic elongation. Clin Biomech 15:188–195

    Article  CAS  Google Scholar 

  21. Nurmi JT, Jarvinen TL, Kannus P, Sievanen H, Toukosalo J, Jarvinen M (2002) Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30:167–173

    PubMed  Google Scholar 

  22. Pena F Grontvedt T, Brown GA et al (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med 24:329–334

    Google Scholar 

  23. Pierz K, Baltz M, Fulkerson J (1995) The effect of Kurosaka screw divergence on the holding strength of bone–tendon–bone grafts. Am J Sports Med 23:332–335

    PubMed  CAS  Google Scholar 

  24. Pujol N, David T, Bauer T, Hardy P (2006) Transverse femoral fixation in anterior cruciate ligament (ACL) reconstruction with hamstrings grafts: an anatomic study about the relationships between the transcondylar device and the posterolateral structures of the knee. Knee Surg Sports Traumatol Arthrosc 14:724–729

    Article  PubMed  Google Scholar 

  25. Rupp S, Krauss PW. Fritsch EW (1997) Fixation strength of a biodegradable intenerence screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy 13:61–65

    Article  PubMed  CAS  Google Scholar 

  26. Safran MR, Harner CD (1996) Technical considerations of revision anterior cruciate surgery. Clin Orthop 325:50–65

    Article  PubMed  Google Scholar 

  27. Seil R, Rupp S, Krauss PW et al (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26:815–819

    PubMed  CAS  Google Scholar 

  28. Shafer BL, Simonian PT (2002) Broken poly-l-lactic acid interference screw after ligament reconstruction. Arthroscopy 18:E35

    Article  PubMed  Google Scholar 

  29. Shapiro JD, Cohn BT, Jackson DW et al (1992) The biomechanical effects of geometric configuration of bone–tendon–bone autografts in anterior cruciate ligament reconstruction. Arthroscopy 8:453–458

    Article  PubMed  CAS  Google Scholar 

  30. Shapiro JD, Jackson DW, Aberman HM et al (1995) Comparison of pull-out strength for seven- and nine-millimeter diameter interference screw size as used in anterior cruciate ligament reconstruction. Arthroscopy 11:596–599

    Article  PubMed  CAS  Google Scholar 

  31. Sidhu DS, Wroble RR (1997) Intraarticular migration of a femoral interference fit screw. A complication of anterior cruciate ligament reconstruction. Am J Sports Med 25:268–271

    PubMed  CAS  Google Scholar 

  32. Weiler A, Windhagen HJ, Raschke MJ et al (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119–128

    Article  PubMed  CAS  Google Scholar 

  33. Weimann A, Zantop T, Rummler M et al (2003) Primary stability of bone–patellar tendon–bone graft fixation with biodegradable pins. Arthroscopy 19:1097–1102

    Article  PubMed  Google Scholar 

  34. Woo SL-Y, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur–anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    PubMed  CAS  Google Scholar 

  35. Zantop T, Ruemmler M, Welbers B, Langer M, Weimann A, Petersen W (2005) Cyclic loading comparison between biodegradable interference screw fixation and biodegradable double cross pin fixation of human bone–patellar tendon–bone grafts. Arthroscopy 21:934–941

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Milano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milano, G., Mulas, P.D., Ziranu, F. et al. Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: a mechanical analysis in porcine knees. Knee Surg Sports Traumatol Arthrosc 15, 733–738 (2007). https://doi.org/10.1007/s00167-006-0269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0269-5

Keywords

Navigation