Noninvasive In Planta Live Measurements of H2O2 and Glutathione Redox Potential with Fluorescent roGFPs-Based Sensors

  • Protocol
  • First Online:
ROS Signaling in Plants

Abstract

In this protocol, we present a noninvasive in planta bioimaging technique for the analysis of hydrogen peroxide (H2O2) and glutathione redox potential in adult Arabidopsis thaliana plants. The technique is based on the use of stereo fluorescence microscopy to image A. thaliana plants expressing the two genetically encoded fluorescent sensors roGFP2-Orp1 and Grx1-roGFP2. We provide a detailed step-by-step protocol for performing low magnification imaging with mature plants grown in soil or hydroponic systems. This protocol aims to serve the scientific community by providing an accessible approach to noninvasive in planta bioimaging and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ravi B, Foyer CH, Pandey GK (2023) The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses. Plant Cell Environ 46(7):1985–2006

    Article  CAS  PubMed  Google Scholar 

  3. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  5. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:2014

    Article  Google Scholar 

  6. Wu F, Chi Y, Jiang Z et al (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578(7796):577–581

    Article  CAS  PubMed  Google Scholar 

  7. Bi G, Hu M, Fu L (2022) The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat Plants 8(10):1160–1175

    Article  CAS  PubMed  Google Scholar 

  8. Zaffagnini M, Fermani S, Marchand CH (2019) Redox homeostasis in photosynthetic organisms: novel and established thiol-based molecular mechanisms. Antioxid Redox Signal 31(3):155–210

    Article  CAS  PubMed  Google Scholar 

  9. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141(2):336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corpas FJ, González-Gordo S, Palma JM (2021) Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 72(3):830–847

    Article  CAS  PubMed  Google Scholar 

  11. Schwarzländer M, Dick TP, Meyer AJ et al (2016) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24(13):680–712

    Article  PubMed  Google Scholar 

  12. Meyer AJ, Brach T, Marty L et al (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52(5):973–986

    Article  CAS  PubMed  Google Scholar 

  13. Schwarzländer M, Fricker MD, Müller C et al (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231(2):299–316

    Article  PubMed  Google Scholar 

  14. Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5(6):553–559

    Article  CAS  PubMed  Google Scholar 

  15. Nietzel T, Elsässer M, Ruberti C et al (2019) The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol 221(3):1649–1664

    Article  CAS  PubMed  Google Scholar 

  16. Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21):22284–22293

    Article  CAS  PubMed  Google Scholar 

  17. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13(5):621–650

    Article  CAS  PubMed  Google Scholar 

  18. Marty L, Siala W, Schwarzländer M et al (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci USA 106(22):9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenwasser S, Rot I, Sollner E et al (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156(1):185–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Albrecht SC, Sobotta MC, Bausewein D et al (2014) Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 19(3):379–386

    Article  CAS  PubMed  Google Scholar 

  21. Ugalde JM, Fuchs P, Nietzel T et al (2021) Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol 186(1):125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arnaud D, Deeks MJ, Smirnoff N (2023) Organelle-targeted biosensors reveal distinct oxidative events during pattern-triggered immune responses. Plant Physiol 191(4):2551–2569

    Article  CAS  PubMed  Google Scholar 

  23. Gutscher M, Sobotta MC, Wabnitz GH et al (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284(46):31532–31540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doccula FG, Luoni L, Behera S et al (2018) In vivo analysis of calcium levels and glutathione redox status in Arabidopsis epidermal leaf cells infected with the hypersensitive response-inducing bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB). Methods Mol Biol 1743:125–141

    Article  CAS  PubMed  Google Scholar 

  25. Ugalde JM, Fecker L, Schwarzländer M et al (2022) Live monitoring of ROS-induced cytosolic redox changes with roGFP2-based sensors in plants. Methods Mol Biol 2526:65–85

    Article  CAS  PubMed  Google Scholar 

  26. Haber Z, Lampl N, Meyer AJ et al (2021) Resolving diurnal dynamics of the chloroplastic glutathione redox state in Arabidopsis reveals its photosynthetically derived oxidation. Plant Cell 33(5):1828–1844

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hipsch M, Lampl N, Zelinger E et al (2021) Sensing stress responses in potato with whole-plant redox imaging. Plant Physiol 187(2):618–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hipsch M, Michael Y, Lampl N et al (2023) Early detection of late blight in potato by whole-plant redox imaging. Plant J 113(4):649–664

    Article  CAS  PubMed  Google Scholar 

  29. Bohle F, Klaus A, Tegethof H et al (2022) High robustness of cytosolic glutathione redox potential under combined salt and osmotic stress in barley as revealed by the biosensor Grx1-roGFP2. bioRxiv 2022.12.22.521445

    Google Scholar 

  30. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the NOLIMITS Center of Excellence for Plant Biology and Other Life Sciences established by the University of Milan. This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4–D.D. 1032 17/06/2022, CN00000022). This study reflects only the authors’ views and opinions; neither the European Union nor the European Commission can be considered responsible for them. This work was also supported by a PhD fellowship from the University of Milan to S.B. and M.G., by the European Union’s HORIZON-TMA-MSCA-PF-E to E.D.A. (proposal number 101059695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buratti, S. et al. (2024). Noninvasive In Planta Live Measurements of H2O2 and Glutathione Redox Potential with Fluorescent roGFPs-Based Sensors. In: Corpas, F.J., Palma, J.M. (eds) ROS Signaling in Plants . Methods in Molecular Biology, vol 2798. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3826-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3826-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3825-5

  • Online ISBN: 978-1-0716-3826-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation