In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB)

  • Protocol
  • First Online:
Plant Programmed Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1743))

Abstract

Plants react to the attack of pathogen microorganisms by mounting appropriate and efficient downstream defense responses often involving a form of localized cell death called hypersensitive response (HR).

Here we describe an innovative and noninvasive protocol based on in vivo bioimaging technique coupled with utilization of genetically encoded fluorescent sensors that allows to monitor and analyze intracellular calcium (Ca2+) dynamics and changes of the glutathione redox status taking place in plant organs during plant interaction with the HR-inducing bacteria Pseudomonas syringae (PstAvrB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thaliana-Pseudomonas syringae interaction. In: Arabidopsis book 1:e0039. doi:https://doi.org/10.1199/tab.0039

  2. Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interaction. Plant Cell 8:1793–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A 106:20995–21000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  5. Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Article  CAS  PubMed  Google Scholar 

  6. Hussain J, Chen J, Locato V, Sabetta W, Behera S, Cimini S, Griggio F, Martínez-Jaime S, Graf A, Bouneb M, Pachaiappan R, Fincato P, Blanco E, Costa A, De Gara L, Bellin D, de Pinto MC (2016) Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 6:36423. https://doi.org/10.1038/srep36423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high resolution live cell imaging of Ca2+ dynamics. Plant J 69:181–192

    Article  CAS  PubMed  Google Scholar 

  9. Costa A, Kudla J (2015) Colorful insights: advances in imaging drive novel breakthroughs in Ca2+ signaling. Mol Plant 8:352–355

    Article  CAS  PubMed  Google Scholar 

  10. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  11. Martinière A, Desbrosses G, Sentenac H, Paris N (2013) Development and properties of genetically encoded pH sensors in plants. Front Plant Sci 4:523

    PubMed  PubMed Central  Google Scholar 

  12. Schwarzländer M, Dick TP, Meyer A, Morgan B (2016) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24:680–712

    Article  PubMed  Google Scholar 

  13. Albrecht SC, Sobotta MC, Bausewein D, Aller I, Hell R, Dick TP, Meyer AJ (2014) Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 19:379–386

    Article  CAS  PubMed  Google Scholar 

  14. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder (2006) JI CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4(10):e327. https://doi.org/10.1371/journal.pbio.0040327

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  16. Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13

    Article  CAS  PubMed  Google Scholar 

  17. Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, Palme K (2013) Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25:4451–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress induced Ca2+ waves are associated with rapid, long-distance root-to shoot signaling in plants. Proc Natl Acad Sci U S A 111:6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loro G, Wagner S, Doccula FG, Behera S, Weinl S, Kudla J, Schwarzländer M, Costa A, Zottini M (2016) Chloroplast-specific in vivo Ca2+ imaging using yellow Cameleon fluorescent protein sensors reveals organelle-autonomous Ca2+ signatures in the stroma. Plant Phys 171:2317–2330

    CAS  Google Scholar 

  20. Beneloujaephajri E, Costa A, L’Haridon F, Métraux JP, Binda M (2013) Production of reactive oxygen species and wound- induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium. BMC Plant Biol 13. https://doi.org/10.1186/1471-2229-13-160

  21. Benikhlef L, L’Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, Lehmann S, Métraux JP (2013) Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol 13:133. https://doi.org/10.1186/1471-2229-13-133

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wagner S, Nietzel T, Aller I, Costa A, Fricker MD, Meyer AJ, Schwarzländer M (2015) Analysis of plant mitochondrial function using fluorescent protein sensors. Methods and protocols. Methods Mol Biol 1305:241–252

    Article  CAS  PubMed  Google Scholar 

  23. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732. https://doi.org/10.1038/nmeth.1488

    Article  CAS  PubMed  Google Scholar 

  24. Aller I, Rouhier N, Meyer AJ (2013) Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Front Plant Sci 4:506

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elodie Vandelle (University of Verona) for critical reading of the manuscript. A.C. acknowledges funding by Ministero dell’Istruzione, dell’Università e della Ricerca through the FIRB 2010 program (RBFR10S1LJ_001) and by the Linea 2 2016 Project from the University of Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doccula, F.G., Luoni, L., Behera, S., Bonza, M.C., Costa, A. (2018). In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB). In: De Gara, L., Locato, V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology, vol 1743. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7668-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7668-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7667-6

  • Online ISBN: 978-1-4939-7668-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation