Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

  • 1068 Accesses

Abstract

Plant cells produce reactive oxygen species (ROS) as by-products of oxygen metabolism and for signal transduction. Depending on their concentration and their site of production, ROS can cause oxidative damage within the cell and must be effectively scavenged. Detoxification of the most stable ROS, hydrogen peroxide (H2O2), via the glutathione-ascorbate pathway may transiently alter the glutathione redox potential (EGSH). Changes in EGSH can thus be considered as an indicator of the oxidative load in the cell. Genetically encoded probes based on roGFP2 enable extended opportunities for in vivo monitoring of H2O2 and EGSH dynamics. Here, we provide detailed protocols for live monitoring of both parameters in the cytosol with the probes Grx1-roGFP2 for EGSH and roGFP2-Orp1 for H2O2, respectively. The protocols have been adapted for live cell imaging with high lateral resolution on a confocal microscope and for multi-parallel measurements in whole organs or intact seedlings in a fluorescence microplate reader. Elicitor-induced ROS generation is used for illustration of the opportunities for dynamic ROS measurements that can be transferred to other research questions and model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340. https://doi.org/10.1104/pp.106.078089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qi J, Wang J, Gong Z, Zhou J-M (2017) Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol 38:92–100. https://doi.org/10.1016/j.pbi.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  3. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  4. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650. https://doi.org/10.1104/pp.118.2.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang H, Ullah F, Zhou D-X et al (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00800

  7. Foreman J, Demidchik V, Bothwell JHF et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. https://doi.org/10.1038/nature01485

    Article  CAS  PubMed  Google Scholar 

  8. Boisson-Dernier A, Lituiev DS, Nestorova A et al (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719

    Article  Google Scholar 

  9. Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616. https://doi.org/10.1016/j.cell.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  10. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322

    Article  CAS  PubMed  Google Scholar 

  11. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  12. Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403. https://doi.org/10.1016/j.jplph.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  13. Ugalde JM, Fuchs P, Nietzel T et al (2021) Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol 186:125–141. https://doi.org/10.1093/plphys/kiaa095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Müller-Schüssele SJ, Schwarzländer M, Meyer AJ (2021) Live monitoring of plant redox and energy physiology with genetically encoded biosensors. Plant Physiol 186:93–109. https://doi.org/10.1093/plphys/kiab019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer AJ, Brach T, Marty L et al (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986. https://doi.org/10.1111/j.1365-313X.2007.03280.x

    Article  CAS  PubMed  Google Scholar 

  16. Gutscher M, Pauleau A-L, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559. https://doi.org/10.1038/nmeth.1212

    Article  CAS  PubMed  Google Scholar 

  17. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13:621–650. https://doi.org/10.1089/ars.2009.2948

    Article  CAS  PubMed  Google Scholar 

  18. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286. https://doi.org/10.1038/nmeth866

    Article  CAS  PubMed  Google Scholar 

  19. Ermakova YG, Bilan DS, Matlashov ME et al (2014) Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat Commun 5:5222. https://doi.org/10.1038/ncomms6222

    Article  CAS  PubMed  Google Scholar 

  20. Pak VV, Ezeriņa D, Lyublinskaya OG et al (2020) Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab 31:642–653.e6. https://doi.org/10.1016/j.cmet.2020.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ugalde JM, Schlößer M, Dongois A et al (2021) The latest HyPe(r) in plant H2O2 biosensing. Plant Physiol 187:480–484. https://doi.org/10.1093/plphys/kiab306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwarzländer M, Dick TP, Meyer AJ, Morgan B (2016) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24:680–712. https://doi.org/10.1089/ars.2015.6266

    Article  CAS  PubMed  Google Scholar 

  23. Nietzel T, Elsässer M, Ruberti C et al (2019) The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol 221:1649–1664. https://doi.org/10.1111/nph.15550

    Article  CAS  PubMed  Google Scholar 

  24. Morgan B, Van Laer K, Owusu TNE et al (2016) Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol 12:437–443. https://doi.org/10.1038/nchembio.2067

    Article  CAS  PubMed  Google Scholar 

  25. Schwarzländer M, Fricker MD, Müller C et al (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316. https://doi.org/10.1111/j.1365-2818.2008.02030.x

    Article  PubMed  Google Scholar 

  26. Rosenwasser S, Rot I, Meyer AJ et al (2010) A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol Plant 138:493–502. https://doi.org/10.1111/j.1399-3054.2009.01334.x

    Article  CAS  PubMed  Google Scholar 

  27. Wagner S, Steinbeck J, Fuchs P et al (2019) Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytol 224:1668–1684. https://doi.org/10.1111/nph.16093

    Article  CAS  PubMed  Google Scholar 

  28. Fricker MD (2016) Quantitative redox imaging software. Antioxid Redox Signal 24:752–762. https://doi.org/10.1089/ars.2015.6390

    Article  CAS  PubMed  Google Scholar 

  29. Beck M, Wyrsch I, Strutt J et al (2014) Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots. J Exp Bot 65:6487–6498. https://doi.org/10.1093/jxb/eru366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou Y, Wang S, Zhou Y et al (2018) Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 30:2779–2794. https://doi.org/10.1105/tpc.18.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wagner S, Nietzel T, Aller I et al (2015) Analysis of plant mitochondrial function using fluorescent protein sensors. Methods Mol Biol 1305:241–252. https://doi.org/10.1007/978-1-4939-2639-8_17

    Article  CAS  PubMed  Google Scholar 

  32. Albrecht SC, Sobotta MC, Bausewein D et al (2014) Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 19:379–386. https://doi.org/10.1177/1087057113499634

    Article  CAS  PubMed  Google Scholar 

  33. Gutscher M, Sobotta MC, Wabnitz GH et al (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284:31532–31540. https://doi.org/10.1074/jbc.M109.059246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Albrecht SC, Barata AG, Großhans J et al (2011) In vivo map** of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14:819–829. https://doi.org/10.1016/j.cmet.2011.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support by the Deutsche Forschungsgemeinschaft through the Research Training Group GRK2064 (to AJM, MS and SJM-S) and through the priority program SPP1710 (to AJM and MS) is gratefully acknowledged. We thank our former lab members Thomas Nietzel, Stephan Wagner, and Philippe Fuchs for their seminal work in establishing protocols and analysis routines for live redox imaging and plate reader assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ugalde, J.M., Fecker, L., Schwarzländer, M., Müller-Schüssele, S.J., Meyer, A.J. (2022). Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation