Peroxisome Biogenesis in Root Nodules and Assimilation of Symbiotically-Reduced Nitrogen in Tropical Legumes

  • Chapter
Plant Peroxisomes

Abstract

Tropical legumes fix nitrogen in association with Bradyrhizobium species. The symbiotically-reduced nitrogen is assimilated by the host plant using a unique pathway that ensures efficient utilization of carbon. Tropical legumes such as soybean, cowpea and bean primarily assimilate and transport fixed-nitrogen as ureides, allantoin and allantoic acid, while temperate legumes such as pea and alfalfa are amide-transporters, producing L-glutamine and L-asparagine. Ureides are produced via de novo biosynthesis and oxidation of purines. The activities of enzymes involved in de novo purine biosynthesis and catabolism vary in effective and ineffective nodules and correlate with the status of the nodules in fixing nitrogen (Atkins, 1991). The ureide-producing nodules are usually determinate in their structure but not all determinate nodules are ureide producers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnaiz, S.L., Travacio, M., Llesuy, S. and Boveris, A. (1995) Hydrogen peroxide metabolism during peroxisome proliferation by fenofibrate. Biochim. Biophys. Acta. 1272: 175–80.

    PubMed  Google Scholar 

  • Atkins, C.A. (1991) Ammonia assimilation and export of nitrogen from the legume nodule. In Biology and Biochemistry of Nitrogen Fixation, (Dilworth, M. and Glenn, A. eds). pp. 293–319. Elsevier, Amsterdam.

    Google Scholar 

  • Atkins, C.A. (1981) Metabolism of purine nucleotides to form ureides in nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). FEBS Lett. 125: 89–93.

    CAS  Google Scholar 

  • Atkins, C.A., Shelp, B.J., Storer, P.J. and Pate, J.S. (1984) Nitrogen nutrition and the development of biochemical functions associated with nitrogen fixation and ammonia assimilation of nodules on cowpea seedlings. Planta. 162: 327–333.

    CAS  Google Scholar 

  • Atkins, C.A., Smith, P.M.C and Storer, P.J. (1997) Re-examination of the intracellular localization of de novo purine synthesis in cowpea nodules. Plant Physiol. 113: 127–135.

    PubMed  CAS  Google Scholar 

  • Atkins, C.A., Storer, P.J. and Pate, J.S. (1988) Pathways of nitrogen assimilation in cowpea nodules studied using 15N2 and allopurinol. Plant Physiol. 86: 204–207.

    PubMed  CAS  Google Scholar 

  • Bergersen, F.J. and Turner, G.L. (1967) Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim. Biophys. Acta. 141: 507–515.

    PubMed  CAS  Google Scholar 

  • Bergmann, H., Preddie, E. and Verma, D.P.S. (1983) Nodulin-35: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. EMBO J. 2 : 2333–2339.

    PubMed  CAS  Google Scholar 

  • Blumwald, E., Fortin, M., Rea, P.A.,Verma, D.P.S. and Poole, R.J. (1985) Presence of plasma membrane type H+-ATPase in the membrane envelope enclosing the bacteroids in soybean root nodules. Plant Physiol. 78: 665–672.

    PubMed  CAS  Google Scholar 

  • Boland, M.J. and Schubert, K.R. (1983) Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch. Biochem. Biophys. 220: 179–187.

    PubMed  CAS  Google Scholar 

  • Boland, M.J., Hanks, J.F., Reynolds, P.H.S., Blevins, D.G., Tolbert, N.E. and Schubert, K.R. (1982) Subcellular organization of ureide biogenesis from glycolytic intermediates and ammonium in nitrogen-fixing soybean nodules. Planta. 155: 45–51.

    CAS  Google Scholar 

  • Borst, P. (1989) Peroxisome biogenesis revisited. Biochem Biophys Acta. 1008: 1–13.

    PubMed  CAS  Google Scholar 

  • Brickner, D.G. (1999) Signals, receptors and protein targeting: determining the molecular mechanisms for peroxisome biogenesis in higher plants. Ph.D. Thesis. The University of Michigan, USA.

    Google Scholar 

  • Capote-Mainez, N. and Sanchez, F. (1997) Characterization of the common bean uricase II and its expression in organs other than nodules Plant Physiol. 115: 1307–1317.

    PubMed  CAS  Google Scholar 

  • Carroll, B.J., McNeil, D.L. and Gresshoff, P.M. (1985) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl. Acad. Sci. USA. 82: 4162–4166.

    PubMed  CAS  Google Scholar 

  • Chapman, K.A., Delauney, A.J., Kim, J.H. and Verma, D.P.S. (1994) Structural characterization of de novo purine biosynthesis enzymes in plants: 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase cDNAs from Vigna aconitifolia. Plant Mol. Biol. 24: 389–395.

    CAS  Google Scholar 

  • Cheon C.-I., Lee, N.-G., Siddique, A. B. M., Bal, A. K. and Verma, D. P. S. (1993) Roles of plant homologs of Rablp and Rab7p in biogenesis of peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J. 12: 4125–4135.

    PubMed  CAS  Google Scholar 

  • Cock, J.M., Mould, R.M., Bennett, M.J. and Cullimore, J.V. (1990) Expression of glutamine synthetase genes in roots and nodules of Phaseolus vulgaris following changes in ammonium supply and infection with various Rhizobium mutants. Plant Mol. Biol. 14: 549–560.

    PubMed  CAS  Google Scholar 

  • Datta, D.B., Triplett, E.W. and Newcomb, E.H. (1991) Localization of xanthine dehydrogenase in cowpea root nodules: Implications for the interaction between cellular compartments during ureide biogenesis. Proc. Natl. Acad. Sci. USA. 88: 4700–4702.

    PubMed  CAS  Google Scholar 

  • Delauney, A.J., Z. Tabaeizadeh and D.P.S. Verma (1988) A stable bifunctional antisense transcript inhibiting gene expression in transgenic plants. Proc. Nat. Acad. Sci. USA. 85: 4300–4304.

    PubMed  CAS  Google Scholar 

  • del Río, L.A., Sandalio, L.M., Palma, J.M., Bueno, P., and Corpas, F.J. (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Rad. Biol. Med. 13: 557–580.

    PubMed  Google Scholar 

  • Diallinas, G., Gorfinkiel, L., Arst, H.N., Cecchetto, G. and Scazzocchio, C. (1995) Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J. Biol. Chem. 270: 8610–8622.

    PubMed  CAS  Google Scholar 

  • Ebbole, D.J. and Zalkin, H. (1987) Cloning and characterization of a 12 gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262: 8274–8287.

    PubMed  CAS  Google Scholar 

  • Fahimi, H.D., Baumgart, E. and Volkl, A. (1993) Ultrastructural aspects of the biogenesis of peroxisomes in rat liver. Biochimie. 75: 201–208.

    PubMed  CAS  Google Scholar 

  • Fuller, F. and Verma, D.P.S. (1984). Accumulation of nodulin mRNAs during the development of effective root nodules of soybean. Plant Mol. Biol. 3: 21–28.

    CAS  Google Scholar 

  • Gonzalez E. (1991) The C-terminal domain of plant catalases. Implications for a glyoxysomal targeting sequence. Eur. J. Biochem. 199: 211–215.

    PubMed  CAS  Google Scholar 

  • Gorfmkiel, L., Diallinas, G. and Scazzocchio, C. (1993) Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J. Biol. Chem. 268:23376–23381.

    Google Scholar 

  • Gould, S.J., Keller, G.A., Schneider, M., Howell, S.H., Garrard, L.J., Goodman, J.M., Distel, B., Tabak, H. and Subramani, S. (1990) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9: 85–90.

    PubMed  CAS  Google Scholar 

  • Groat, R.G. and Schrader, L.E. (1982) Isolation and immunochemical characterization of plant glutamine synthetase in alfalfa (Medicago sativa L.) nodules. Plant Physiol. 70: 1759–1761.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Aoki, M., Kondo, M. and Nishimura, M. (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol. 38(6): 759–768.

    PubMed  CAS  Google Scholar 

  • Heldt, H.W. (1969) Adenine nucleotide translocation in spinach chloroplasts. FEBS Lett. 5: 11–14.

    PubMed  CAS  Google Scholar 

  • Henikoff, S. (1987) Multi-functional polypeptides for purine de novo synthesis. BioEssays. 6: 8–13.

    CAS  Google Scholar 

  • Heupel, R., Markgraf, T., Robinson, D.G., Heldt, H.W. (1991) Compartmentation studies on spinach leaf peroxisomes. Evidence for channelling of photorespiratory metabolites in peroxisomes devoid of intact boundary membrane. Plant Physiol. 96: 971–979.

    PubMed  CAS  Google Scholar 

  • Hirel, B., Bouet, C., King, B., Layzell, D., Jacobs, F. and Verma, D.P.S. (1987) Glutamine synthetase genes are regulated by ammonia provided externally or by symbiotic nitrogen fixation. EMBO J. 6: 1167–1171.

    PubMed  CAS  Google Scholar 

  • Hirel, B., Marsolier, M.C., Hoarau, A., Hoarau, J., Bargeon, J., Schafer, R. and Verma, D.P.S. (1992) Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme. Plant Mol. Biol. 20: 207–218.

    PubMed  CAS  Google Scholar 

  • Holmes, E.W., McDonald, J.A., McCord, J.M., Wyngaarden, J.B. and Kelley, W.N. (1973) Human glutamine phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 248:144–150.

    PubMed  CAS  Google Scholar 

  • Hu, C.-A. A. (1991) M.Sc. Thesis. Ohio State University, Columbus OH, USA.

    Google Scholar 

  • Huang, A.H.C., Trelease, R.N. and Moore, Jr., T.S. (1983) Plant Peroxisomes. Academic Press, New York.

    Google Scholar 

  • Hurst, D.T., Griffiths, E. and Vayianos, C. (1985) Inhibition of uricase by pyrimidine and purine drugs. Clin. Biochem. 18: 247–251.

    PubMed  CAS  Google Scholar 

  • Ito, T., Shiraishi, H., Okada, K. and Shimura, Y. (1994) Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs. Plant Mol. Biol. 26: 529–533.

    PubMed  CAS  Google Scholar 

  • Kim, J.H., Delauney, A.J. and Verma, D.P.S. (1995b) Control of de novo purine biosynthesis genes in ureide-producing legumes: Induction of glutamine phosphoribosylpyrophosphate amidotransferase gene and characterization of its cDNA from soybean and Vigna. Plant J. 7: 77–86.

    PubMed  CAS  Google Scholar 

  • Kim, J.H., Humphreys, J.M. and Verma, D.P.S. (1995a) Regulation of ureide biosynthesis genes in soybean root nodules. Plant Physiol. 108S: 72.

    Google Scholar 

  • Kim, J.K. (1996) Regulation of ureide biosynthesis genes in tropical legume root nodules. Ph.D. Thesis. The Ohio State University, USA.

    Google Scholar 

  • Kindl, H. (1982) The biogenesis of microbodies (peroxisomes glyoxysomes) Int. Rev Cyto. 80: 193–229.

    CAS  Google Scholar 

  • Klebanoff, S.J. and Kazazi, F. (1995) Inactivation of human immunodeficiency virus type 1 by the amine oxidase-peroxidase system. Clin. Microbiol. 33: 2054–2057.

    CAS  Google Scholar 

  • Kohl, D.H., Schubert, K.R., Carter, M.B., Hagedorn, C.H. and Shearer, G. (1988) Proline metabolism in N2-fixing root nodules: Energy transfer and regulation of purine synthesis. Proc. Natl. Acad. Sci. USA. 85: 2036–2040.

    PubMed  CAS  Google Scholar 

  • Kos, W., Kal, A., Van Wilpe, S. and Tabak, H. (1995) Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. Biochim. Biophys. Acta. 1264: 79–86.

    PubMed  Google Scholar 

  • Larsen, K. and Jochimsen, B.U. (1987) Appearance of purine-catabolizing enzymes in Fix+ and Fix- root nodules on soybean and effect of oxygen on the expression of the enzymes in callus tissue. Plant Physiol. 85: 452–456.

    PubMed  CAS  Google Scholar 

  • Lazarow, P. B. and Fujiki. (1985) Biogenesis of peroxisomes. Ann. Rev. Cell Biol. 1: 489–530.

    PubMed  CAS  Google Scholar 

  • Lee, N.G., Stein, B., Suzuki, H. and Verma, D.P.S. (1993) Antisense expression of nodulin-35 RNA in Vigna aconitifolia root nodules retards peroxisome development and the availability of nitrogen to the plant. Plant J. 3: 599–606.

    PubMed  CAS  Google Scholar 

  • Legocki, R.P. and D.P.S. Verma (1979). A nodule-specific plant protein (nodulin-35) from soybean. Science. 205 : 190–193.

    PubMed  CAS  Google Scholar 

  • Löpez-Huertas, E., Charlton, W.L., Johnson, B., Graham, I.A. and Baker, A. (2000) Stress induces peroxisome biogenesis genes. EMBO J. 19(24): 6770–6777.

    PubMed  Google Scholar 

  • Luers, G., Hashimoto, T., Fahimi, H.D. and Volkl, A. (1993) Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J. Cell Biol. 121: 1271–80.

    PubMed  CAS  Google Scholar 

  • Marnett, L., Weller, P. and Battista, J. (1986) Comparison of the peroxidase activity of Haem proteins and cytochrome P-450. In: Cytochrome P-450. Structure, Mechanism and Biochemistry. (Ortiz de Montellano, P. ed.) pp 29–76, Plenum Press, New York.

    Google Scholar 

  • Mclntire, W.S. and Hartmann, C. (1993) Copper-containing amine oxidase. In: Principle and application of quinoproteins. (Davidson, V.L. ed.). pp 97–171. Marcel Dekker Inc., New York.

    Google Scholar 

  • Meeks, J.C., Wölk, C.P., Schilling, N, Shaffer, P.W., Avissar, Y. and Chien, W.S. (1978) Initial organic products of fixation of [13N]dinitrogen by root nodules of soybean (Glycine max). Plant Physiol. 61: 980–983.

    PubMed  CAS  Google Scholar 

  • Messenger, L.J. and Zalkin, H. (1979) Glutamine phosphoribosyl pyrophosphate amido-transferase from Escherichia coli. J. Biol. Chem. 254: 3382–3392.

    PubMed  CAS  Google Scholar 

  • Meyer, E. and Switzer, R.L. (1979) Regulation of Bacillus subtilis glutamine phosphoribosyl-pyrophosphate amidotransferase activity by end products. J. Biol. Chem. 254: 5397–5402.

    PubMed  CAS  Google Scholar 

  • Miao, G.H., Hirel, B., Marsolier, M.C., Ridge, R.W. and Verma, D.P.S. (1991) Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell. 3: 11–22.

    PubMed  CAS  Google Scholar 

  • Mitchell, J.P. (1965) The DNA content of nuclei in pea root nodules. Annals Bot. 29: 371–376.

    CAS  Google Scholar 

  • M iura, S., Oda, T., Funai, T., Ito, M., Okada, Y. and Ichiyama, A. (1994) Urate oxidase is imported into peroxisomes recognizing the C-terminal SKL motif of proteins. Eur. J. Biochem. 223: 141–146.

    PubMed  CAS  Google Scholar 

  • Mohamedali, K.A., Guicherit, O.M., Kellems, R.E. and Rudolph, F.B. (1993) The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine. J. Biol. Chem. 268: 23728–23733.

    PubMed  CAS  Google Scholar 

  • Mothcs, K. K. (1961) The metabolism of urea and ureides. Can. J. Bot. 39: 1785–1807.

    Google Scholar 

  • Mullen, R.T., Lee, M.S. and Trelease, R.N. (1997) Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J. 12:313–322.

    PubMed  CAS  Google Scholar 

  • Müller, M., Kraupp, M., Chiba, P. and Rumpold, H. (1982) Regulation of purine uptake in normal and neoplastic cells. Adv. Enzyme Regul. 21: 239–256.

    Google Scholar 

  • Ncuhard, J. and Nygaard, P. (1987) Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Vol. 1 (Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E., eds.). pp. 445–473: American Society for Microbiology, Washington D.C., USA.

    Google Scholar 

  • Newcomb, E.H. and Tandon, S.R. (1981) Uninfected cells of soybean root nodules: Ultrastructure suggests key role in ureide production. Science. 212: 1394–1396.

    PubMed  CAS  Google Scholar 

  • Nguyen J., Machai, L., Vidal, J., Perrot-Rechenmann, C. and Gadal, P. (1986) Immunochemical studies on xanthine dehydrogenase of soybean root nodules. Planta. 167: 190–195.

    CAS  Google Scholar 

  • Nguyen, T., Zelechowska, M, Foster, V., Bergmann, H. and Verma, D.P.S. (1985) Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc. Natl. Acad. Sci. USA. 82: 5040–5044.

    PubMed  CAS  Google Scholar 

  • Nohno, T., Saito, T. and Hong, J.S. (1986) Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease Operon (glnHPQ). Mol. Gen. Genet. 205: 260–269.

    PubMed  CAS  Google Scholar 

  • Olsen, L.J. (1998) The surprising complexity of peroxisome biogenesis. Plant Mol. Biol. 1–2: 163–189.

    Google Scholar 

  • Osumi, T., Yokota, S., Hashimoto, T. (1990) Proliferation of peroxisomes and induction of peroxisomal β-oxidation enzymes in rat hepatoma H4IIEC3 by ciprofibrate. J. Biochem. (Tokyo). 108:614–621.

    CAS  Google Scholar 

  • Palma, J.M., Garrido, M., Rodriguez-Garcia, M.I. and del Río, L.A. (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch. Biochem. Biophys. 287: 68–74.

    PubMed  CAS  Google Scholar 

  • Pate, S.J., Atkins, C.A., White, S.T., Rainbird, R.M. and Woo, K.C. (1980) Nitrogen nutrition and Xylem transport of nitrogen in ureide-producing grain legumes. Plant Phyisol. 65: 961–965.

    CAS  Google Scholar 

  • Paul, K.G. and Avi-dorl, Y. (1954) The oxidation of uric acid with horseradish peroxidase. Acta. Chem. Scand. 8: 637–648.

    CAS  Google Scholar 

  • Pistelli, L., De Bellis, L. and Alpi, A. (1995) Evidences of glyoxylate cycle in peroxisomes of senescent cotyledons. Plant Sci. 109: 13–21.

    CAS  Google Scholar 

  • Purdue, P.E. and Lazarow, P.B. (1996) Targeting of human catalasc to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J. Cell Biol. 134(4): 849–62.

    CAS  Google Scholar 

  • Reynolds, P.H.S., Blevins, D.G. and Randall, D.D. (1984) 5-phosphoribosylpyrophosphatc amidotransferase from soybean root nodules: Kinetic and regulatory properties. Arch. Biochem. Biophys. 229: 623–631.

    PubMed  CAS  Google Scholar 

  • Reynolds, P.H.S., Boland, M.J., Blevins, D.G., Schubert, K.R. and Randall, D.D. (1982) Enzymes of amide and ureide biogenesis in develo** soybean nodules. Plant Physiol. 69: 1334–1338.

    PubMed  CAS  Google Scholar 

  • Riezman, H., Weir, E., Leaver, C., Titus, D.E. and Becker, W.M. (1980) Regulation of glyoxysomal enzymes during germination of cucumber 3; in vitro translation of four glyoxysomal enzymes. Plant Physiol. 64: 40–46.

    Google Scholar 

  • Robertson, J.G., Warburton, M. and Farnden, K.J.F. (1975) Induction of glutamate synthase during nodule development in lupin. FEBS Lett. 55: 33–37.

    PubMed  CAS  Google Scholar 

  • Robinson, S.P. (1985) The involvement of stromal ATP in maintaining the pH gradient across the chloroplast envelope in the light. Biochim. Biophys. Acta. 806: 187–194.

    CAS  Google Scholar 

  • Robinson, S.P. and Wiskich, J.T. (1977b) Uptake of ATP analogs by isolated pea chloroplasts and their effect in CO2 fixation and electron transport. Biochim. Biophys. Acta. 461: 131–140.

    PubMed  CAS  Google Scholar 

  • Rolfes, R.J. and Zalkin, H. (1988) Escherichia coli genepurR encoding a repressor protein for purine nucleotide synthesis. J. Biol. Chem. 263: 19653–19661.

    PubMed  CAS  Google Scholar 

  • Salvemini, F., Marini, A.-M., Riccio, A., Patriarca, E. J. and Chiurazzi, M. (2001) Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene. 270: 237–243.

    PubMed  CAS  Google Scholar 

  • Schnorr, K.M., Nygaard, P. and Laloue, M. (1994) Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes. Plant J. 6: 113–121.

    PubMed  CAS  Google Scholar 

  • Schubert, K.R. (1986) Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Ann. Rev. Plant Physiol. 37: 539–574.

    CAS  Google Scholar 

  • Schubert, K.R. and Boland, M.J. (1990) The ureides. In: Biochemistry of Plants. 16: 197–281.

    CAS  Google Scholar 

  • Senecoff, J.F. and Meagher, R.B. (1993) Isolating the Arabidopsis thaliana genes for de novo purine synthesis by suppression of Escheria coli mutants. Plant Physiol. 102: 387–399.

    PubMed  CAS  Google Scholar 

  • Sies, H. (1977) Cytochrome oxidase and urate oxidase as intracellular O2 indicator in studies of O2 gradient during hypoxia in liver. Adv. Exp. Med. Biol. 94: 561–566.

    PubMed  CAS  Google Scholar 

  • Suarez, T., de Queiroz, M.V., Oestreicher, N. and Scazzocchio, C. (1995) The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J. 14: 1453–1467.

    PubMed  CAS  Google Scholar 

  • Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Ann. Rev. Cell Biol. 9:445–478.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Gadal, P. and Oaks, A. (1981) Intracellular distribution of enzymes associated with nitrogen assimilation in roots. Planta. 151: 457–461.

    CAS  Google Scholar 

  • Suzuki, H. and Verma, D.P.S. (1991) Soybean nodule-specific uricase (Nodulin-35) is expressed and assembled into a functional tetrameric holoenzyme in Escherichia coli. Plant Physiol. 95: 384–389.

    PubMed  CAS  Google Scholar 

  • Tajima, S. and Yamamoto, Y., 1977, Regulation of uricase activty in develo** roots of Glycine max, non-nodulation variety A62–2. Plant Cell Physiol. 18: 247–253.

    CAS  Google Scholar 

  • Tajima, S., Kanazawa, T., Takeuchi, E., Yamamoto, Y. (1985) Characteristics of a urate-degrading diamine oxidase-peroxidase enzyme system in soybean radicles. Plant Cell Physiol. 26: 787–795.

    CAS  Google Scholar 

  • Tajima, S., Kato, N., and Yamamoto, Y., (1983) Cadaverine involved in urate degrading activity (uricase activity) in soybean radicles. Plant Cell Physiol. 24: 247–253.

    CAS  Google Scholar 

  • Tanaka, A., Yamamura, M., Kawamoto, S. and Fukui, S. (1977) Production of uricase by Candida tropicalis using n-alkane as substrate. Appl. Env. Microbiol. 34: 342–346.

    CAS  Google Scholar 

  • Tanake, K., Tajima, S. and Kouchi, H. (2000) Structure and expression analysis of uricase mRNA from Lotus japonicus. Mol. Plant-Microbe Interact. 13: 1156–1160.

    Google Scholar 

  • Trelease, R.N. (1984) Biogenesis of glyoxysomes. Ann. Rev. Plant Physiol. 35: 321–347.

    CAS  Google Scholar 

  • Van den Bosch, K.A., Noel, K.D., Kaneko, Y. and Newcomb, E.H. (1985) Nodule initiation elicited by non-infective mutants of Rhizobium phaseoli. J. Bacteriol. 162: 950–959.

    Google Scholar 

  • Veenhuis, M, Mateblowski, M., Kunau, W.H., and Harder, W. (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast. 3(2): 77–84.

    PubMed  CAS  Google Scholar 

  • Verma D.P.S. (2000) Nodulins: Nodule-specific host gene products, their induction and function in root nodule symbiosis. In Prokaryotic Nitrogen Fixation: A Model System for Analysis of Biological Process. (Tripton M, ed.). Horizon Sci. Press, Wymondham, UK.

    Google Scholar 

  • Verma, D.P.S. (1989) Plant genes involved in carbon and nitrogen assimilation in root nodules. In Plant nitrogen metabolism, (Poulton, J.E., Romeo, J.T. and Conn, E.E., eds.). pp 43–63. New York: Plenum Pub. Corp.

    Google Scholar 

  • Verma, D.P.S., Fortin, M.G., Stanley, J., Mauro, V.P., Purohit, S. and Morrison, N. (1986) Nodulins and nodulin genes of Glycine max. Plant Mol. Biol. 7: 51–61.

    CAS  Google Scholar 

  • Walker, E.L. and Coruzzi, G.M. (1989) Developmentally regulated expression of the gene family for cytosolic glutamine synthetase in Pisum sativum. Plant Physiol. 91: 702–708.

    PubMed  CAS  Google Scholar 

  • Wells, X. E. and Lees, E.M. (1991) Ureidoglycolate amidohydrolase from develo** French bean fruits (Phaseolus vulgaris [L.]). Arch. Biochem. Biophys. 287: 151–159.

    PubMed  CAS  Google Scholar 

  • Wu, T. (1998) Assimilation of symbiotically-reduced nitrogen in tropical legumes: Regulation of peroxisome proliferation and ureide production. Ph.D. Thesis, The Ohio State University, Columbus, Ohio. USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verma, D.P.S. (2002). Peroxisome Biogenesis in Root Nodules and Assimilation of Symbiotically-Reduced Nitrogen in Tropical Legumes. In: Baker, A., Graham, I.A. (eds) Plant Peroxisomes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9858-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9858-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6007-5

  • Online ISBN: 978-94-015-9858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation