Carbon Metabolism During Symbiotic Nitrogen Fixation

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

Abstract

The complex interaction between legumes and the family of soil bacteria known as rhizobia results in the formation of a novel plant organ, the root nodule. Inside nodules, bacteroids reduce molecular dinitrogen into ammonia. Both partners benefit from this symbiosis, since the plant’s requirements for nitrogen are fulfilled by the bacteroids, which in turn receive organic carbon from the plant originating from photosynthesis. The carbon cost for this process is high, rendering the nodules strong carbon sinks, as they are primarily dependent on the import and metabolism of sucrose to provide the energy and carbon skeletons required for atmospheric nitrogen reduction, the assimilation of the ammonia and the export of the resulting nitrogenous compounds. Thus it is not surprising that the availability of photoassimilates is found to be an important factor controlling nodule development and function. Although carbon metabolism during symbiotic nitrogen fixation has received significant attention since the early days of research on the legume–rhizobium symbiosis, the introduction of the model legumes Lotus japonicus and Medicago truncatula and the development of genomic resources for them and various crop legumes have allowed new insights into old questions about the biochemical and molecular mechanisms involved. These include sucrose and starch metabolism, dark-CO2 fixation and responses of carbohydrate metabolism to environmental factors and the availability of other nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antolín-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473

    Article  PubMed  Google Scholar 

  • Atkins CA (1974) Occurrence and some properties of carbonic anhydrase from legume root nodules. Phytochemistry 13:93–98

    Article  CAS  Google Scholar 

  • Atkins C, Smith P, Mann A, Thumfort P (2001) Localization of carbonic anhydrase in legume nodules. Plant Cell Environ 24:317–326

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic-anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Baier MC, Barsch A, Kuster H, Hohnjec N (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600–1618

    Article  PubMed  CAS  Google Scholar 

  • Barratt DHP, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664

    Article  PubMed  CAS  Google Scholar 

  • Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule A, Smith AM (2009) Sucrose catabolism in Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  PubMed  CAS  Google Scholar 

  • Bocock PN, Morse AM, Dervinis C, Davis JM (2008) Evolution and diversity of invertase genes in Populus trichocarpa. Planta 227:565–576

    Article  PubMed  CAS  Google Scholar 

  • Carter CJ, Thornburg RW (2004) Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase, a ubiquitous highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  PubMed  CAS  Google Scholar 

  • Craig J, Barratt P, Tatge H, Dejardin A, Handley L, Gardner CD, Barber L, Wang T, Hedley C, Martin C, Smith AM (1999) Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J 17:353–362

    Article  CAS  Google Scholar 

  • Cramer MD, Richards MB (1999) The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings. J Exp Bot 50:79–87

    CAS  Google Scholar 

  • Day DA, Poole PA, Tyerman SD, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71

    Article  PubMed  CAS  Google Scholar 

  • de la Pena TC, Frugier F, McKhann HI, Bauer P, Brown S, Kondorosi A, Crespi M (1997) A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J 11:407–420

    Article  Google Scholar 

  • Fedorova M, Tikhonovich IA, Vance CP (1999) Expression of C-assimilating enzymes in pea (Pisum sativum L.) root nodules: in situ localization in effective nodules. Plant Cell Environ 22:1249–1262

    Article  CAS  Google Scholar 

  • Fischinger SA, Hristozkova M, Mainassara Z-A, Schulze J (2010) Elevated CO2 concentration around alfalfa nodules increases N2 fixation. J Exp Bot 61:121–130

    Article  PubMed  CAS  Google Scholar 

  • Flemetakis E, Dimou M, Cotzur D, Aivalakis G, Efrose RC, Kenoutis C, Udvardi M, Katinakis P (2003) A Lotus japonicus β-type carbonic anhydrase gene expression pattern suggests distinct physiological roles during nodule development. Biochim Biophys Acta 1628:186–194

    Article  PubMed  CAS  Google Scholar 

  • Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P (2006) Spatial and temporal organisation of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase. Plant Mol Biol 62:53–69

    Article  PubMed  CAS  Google Scholar 

  • Fotelli MN, Tsikou D, Kolliopoulou A, Aivalakis G, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E (2011) Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. J Exp Bot 62:2959–2971

    Article  PubMed  CAS  Google Scholar 

  • Gaidamashvili M, Yuki O, Iijima S, Takayama T, Ogawa T, Muramoto K (2004) Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities. J Biol Chem 279:26028–26035

    Article  PubMed  CAS  Google Scholar 

  • Galvez L, Gonzalez EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    Article  PubMed  CAS  Google Scholar 

  • Gordon AJ (1992) Carbon metabolism in the legume nodule. In: Pollock CJ, Farrar JF, Gordon AJ (eds) Carbon partitioning within and between organisms. Bios Scientific, Oxford

    Google Scholar 

  • Gordon AJ, Mitchell DF, Ryle GJA, Powell CE (1987) Diurnal production and utilization of photosynthate in nodulated white clover. J Exp Bot 38:84–98

    Article  CAS  Google Scholar 

  • Gordon AJ, Thomas BJ, Reynolds PHS (1992) Localization of sucrose synthase in soybean root nodules. New Phytol 122:35–44

    Article  CAS  Google Scholar 

  • Gordon AJ, Thomas BJ, James CL (1995) The location of sucrose synthase in root nodules of white clover. New Phytol 130:523–530

    Article  CAS  Google Scholar 

  • Gordon AJ, Minchin FR, Skøt L, James CL (1997) Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol 114:937–946

    PubMed  CAS  Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878

    Article  PubMed  CAS  Google Scholar 

  • Grobbelaar N, Hough MC, Clarke B (1971) Nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. 3. Effect of carbon dioxide and ethylene. Plant Soil 35:215–278

    Article  Google Scholar 

  • Herrada G, Puppo A, Rigaud J (1989) Uptake of metabolites by bacteriod containing vesicles and by free bacteroids from French bean nodules. J Gen Microbiol 135:3165–3177

    CAS  Google Scholar 

  • Hibberd JM, Quick PW (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454

    Article  PubMed  CAS  Google Scholar 

  • Hoang CV, Chapman KD (2002) Biochemical and molecular inhibition of plastidial carbonic anhydrase reduces the incorporation of acetate into lipids in cotton embryos and tobacco cell suspensions and leaves. Plant Physiol 128:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Becker JD, Puhler A, Perlick AM, Kuster H (1999) Genomic organization and expression properties of the MtSucS1 gene, which encodes a nodule-enhanced sucrose synthase in the model legume Medicago truncatula. Mol Gen Genet 261:514–522

    Article  PubMed  CAS  Google Scholar 

  • Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820

    Article  PubMed  CAS  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Suh S, Guan C, Tsay Y-F, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family1. Plant Physiol 134:969–978

    Article  PubMed  CAS  Google Scholar 

  • Ji XM, van den Ende W, van Laere A, Cheng SH (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  PubMed  CAS  Google Scholar 

  • Jia LQ, Zhang BT, Mao CZ, Li JH, Wu YR, Wu P, Wu ZC (2008) OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta 228:51–59

    Article  PubMed  CAS  Google Scholar 

  • Kalloniati C, Tsikou D, Lampiri V, Fotelli MN, Rennenberg H, Chatzipavlidis I, Fasseas C, Katinakis P, Flemetakis E (2009) Characterization of a Mesorhizobium loti α-type carbonic anhydrase and its role in symbiotic nitrogen fixation. J Bacteriol 191:2593–2600

    Article  PubMed  CAS  Google Scholar 

  • Kavroulakis N, Flemetakis E, Aivalakis G, Katinakis P (2000) Carbon metabolism in develo** soybean nodules: the role of carbonic anhydrase. Mol Plant Microbe Interact 13:14–22

    Article  PubMed  CAS  Google Scholar 

  • Kavroulakis N, Flemetakis E, Aivalakis G, Dahiya P, Brewin NJ, Fasseas K, Hatzopoulos P, Katinakis P (2003) Tissue distribution and subcellular localization of carbonic anhydrase in mature soybean root nodules indicates a role in CO2 diffusion. Plant Physiol Biochem 41:479–484

    Article  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickeing IJ, Prince RC, Morel FM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  • Layzell DB, Pate JS, Atkins CA, Canvin DT (1981) Partitioning of carbon and nitrogen and nutrition of root and shoot apex in a nodulated legume. Plant Physiol 67:30–36

    Article  PubMed  CAS  Google Scholar 

  • Le Roux MR, Khan S, Valentine AJ (2008) Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytol 177:956–962

    Article  PubMed  Google Scholar 

  • Marcus EA, Moshfegh AP, Sachs G, Scott DR (2005) The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 187:729–738

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CA, Vance CP, Heichel GH, Stade S (1984) CO2 fixation in alfalfa and birdsfoot trefoil root nodules and partitioning of 14C to the plant. Crop Sci 24:257–264

    Article  CAS  Google Scholar 

  • Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J 15:173–184

    Article  PubMed  CAS  Google Scholar 

  • Minchin FR, Pate JS (1973) The carbon balance of a legume and the functional economy of its root nodules. J Exp Bot 24:259–270

    Article  CAS  Google Scholar 

  • Morell M, Copeland L (1984) Enzymes of sucrose breakdown in soybean nodules. Plant Physiol 74:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Morell M, Copeland L (1985) Sucrose synthase of soybean nodules. Plant Physiol 78:149–154

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Izumi T, Banba M, Umehara Y, Kouchi H, Izui K, Shingo H (2003) Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume. Mol Plant Microbe Interact 16:281–288

    Article  PubMed  CAS  Google Scholar 

  • Nimmo GA, Wilkins MB, Nimmo HG (2001) Partial purification and characterization of a protein inhibitor of phosphoenolpyruvate carboxylase kinase. Planta 213:250–257

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Thu Mai H, Fujii M, Hata S, Izui K, Tajima S (2006) Phosphoenolpyruvate carboxylase plays a crucial role in limiting nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol 47:613–621

    Article  PubMed  CAS  Google Scholar 

  • Novak K, Pcsina K, Ncbcsarova J, Skrdleta V, Lisa L, Nasincc V (1995) Symbiotic tissue degradation pattern in the ineffective nodules of three nodulation mutants of pea. Ann Bot 76:301–313

    Article  Google Scholar 

  • Ou Yang L, Udvardi MK, Day D (1990) Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules. Planta 182:437–444

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Parsons R, Day DA (1990) Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ 13:501–512

    Article  Google Scholar 

  • Pate JS, Herridge DF (1977) Partitioning and utilization of net photosynthate in a nodulated annual legume. J Exp Bot 29:401–412

    Article  Google Scholar 

  • Pate JS, Layzell DB, Atkins CA (1979a) Economy of carbon and nitrogen in a nodulated and non-nodulated (NO3-grown) legume. Plant Physiol 64:1008–1083

    Article  Google Scholar 

  • Pate JS, Layzell DB, McNeil DL (1979b) Modeling the transport and utilization of carbon and nitrogen in a nodulated legume. Plant Physiol 63:730–737

    Article  PubMed  CAS  Google Scholar 

  • Qi XP, Wu ZC, Li JH, Mo XR, Wu SH, Chu J, Wu P (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64:575–587

    Article  PubMed  CAS  Google Scholar 

  • Ronson CW, Lyttleton P, Robertson JG (1981) C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci USA 78:4284–4288

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl L, Vance CP, Pedersen WB (1990) Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol 93:12–19

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance CP (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139

    Article  CAS  Google Scholar 

  • Sulieman S, Schulze J (2010) The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalog A17) is low compared to Medicago sativa. J Plant Physiol 167:683–692

    Article  PubMed  CAS  Google Scholar 

  • Sunderhaus S, Dudkina NV, Jänsch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta E, Boekema EJ, Braun HP (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem 281:6482–6488

    Article  PubMed  CAS  Google Scholar 

  • Thummler F, Verma DPS (1987) Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules. J Biol Chem 262:14730–14736

    PubMed  CAS  Google Scholar 

  • Tsikou D, Stedel C, Kouri ED, Udvardi MK, Wang TL, Katinakis P, Labrou NE, Flemetakis E (2011) Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochim Biophys Acta 1814:496–504

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  PubMed  CAS  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation, limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Vance CP, Boylan KLM, Maxwell CA, Heichel GH, Hardman LL (1985) Transport and partitioning of CO2 fixed by root nodules of ureide and amide producing legumes. Plant Physiol 78:774–778

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Gergerson RG, Robinson DL, Miller SS, Gantt JS (1994) Primary assimilation of nitrogen in alfalfa nodules: molecular features of enzymes involved. Plant Sci 101:51–64

    Article  CAS  Google Scholar 

  • Verma DPS, Fortin MG, Stanley J, Mauro VP, Purohit S, Morrison N (1986) Nodulins and nodulin genes of Glycine max. Plant Mol Biol 7:51–61

    Article  CAS  Google Scholar 

  • Vidal J, Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2:230–237

    Article  Google Scholar 

  • Vriet C, Welham T, Brachmann A, Pike J, Perry J, Parniske M, Sato S, Tabata S, Smith AM, Wang TL (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655

    Article  PubMed  CAS  Google Scholar 

  • Wang TL, Hedley CL (1991) Seed development in peas: knowing your three ‘r’s’ (or four, or five). Seed Sci Res 1:3–14

    Article  Google Scholar 

  • Wang TL, Hadavizideh A, Harwood A, Welham TJ, Harwood WA, Faulks R, Hedley CL (1990) An analysis of seed development in Pisum sativum. XIII. The chemical induction of storage product mutants. Plant Breed 105:311–320

    Article  CAS  Google Scholar 

  • Wang TL, Bogracheva TY, Hedley CL (1998) Starch: as simple as A, B, C? J Exp Bot 49:481–502

    CAS  Google Scholar 

  • Welham T, Pike P, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske P, Wang TL (2009) A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot 60:3353–3365

    Article  PubMed  CAS  Google Scholar 

  • White J, Prell J, James K, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Sato SJ, Clemente TE, Chollet R (2007) The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. Plant J 49:910–923

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Ikeda T, Ishizuka J (2004) Effects of CO2 concentration in rhizosphere on nodulation and N2 fixation of soybean and cowpea. Soil Sci Plant Nutr 50:713–720

    Article  Google Scholar 

  • Zhang XQ, Chollet R (1997) Phosphoenolpyruvate carboxylase protein kinase from soybean root nodules: partial purification, characterization, and up/down-regulation by photosynthate supply from the shoots. Arch Biochem Biophys 343:260–268

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Riely BK, Burns NJ, Ané J-M (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172:2491–2499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Flemetakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flemetakis, E., Wang, T.L. (2013). Carbon Metabolism During Symbiotic Nitrogen Fixation. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_3

Download citation

Publish with us

Policies and ethics

Navigation