Metabolism and Transport of Carbon in Legume Nodules Under Phosphorus Deficiency

  • Chapter
  • First Online:
Legume Nitrogen Fixation in Soils with Low Phosphorus Availability

Abstract

Phosphorus (P) is an essential element for plant growth but is largely unavailable for root uptake due to the formation of insoluble complexes. Therefore, P deficiency is a wide-spread agricultural dilemma. However, in addition to P, nitrogen (N) and carbon (C) metabolisms are intricately linked to plant physiological events and are major determinants in the plant and nodule responses to P deficiency. These responses can be measured in terms of growth, photosynthesis, and respiration. It has been shown that during P stress, plant growth also affects the C requirement of biological N2 fixation (BNF), and this has been proposed as a means of BNF regulation. Furthermore, the sink effect of nodules, at various levels of developmental and functional stages, has been observed via alterations in photosynthesis and respiration. The photosynthetic and respiratory C costs of BNF and nodule growth make considerable contributions to the overall C budget of the symbiosis. However, the use of overall C budget may mask the separate allocation of C to above and belowground organs during P deficiency. Moreover, the division of respiratory energy toward new tissue growth and nutrient acquisition may not be evident in the overall C budget. In this chapter, we review the recent contributions made in the arena of C metabolism of nodules during P stress and will aim to gain a better understanding of the underlying physiological and transcriptional events which give rise to changed in the C budget and allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.) J Exp Bot 51:1289–1297

    CAS  PubMed  Google Scholar 

  • Araya T, Noguchi K, Terashima I (2006) Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L. Plant Cell Physiol 47:644–652

    Article  CAS  PubMed  Google Scholar 

  • Atkins CA (1991) Ammonia assimilation and export of nitrogen from legume nodule. In: Dilworth M, Glen A (eds) Biology and biochemistry of nitrogen fixation. Elsevier Science Publishers, Amsterdam, pp 293–319

    Google Scholar 

  • Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–562

    Article  Google Scholar 

  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513

    Article  CAS  PubMed  Google Scholar 

  • Bihimidine S, Hunter CT, Johns CE, Koch KE, Braun DM (2013) Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front Plant Sci 4:1–15

    Google Scholar 

  • Bourion V, Martin C, de Larambergue H, Jacquin F, Aubert G, Martin-Magniette ML, Balzergue S, Lescure G, Citerne S, Lepetit M, Munier-Jolain N, Salon C, Duc G (2014) Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant. J Exp Bot 65:2365–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coruzzi GM (2003) Primary N-assimilation into amino acids in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–17

    Google Scholar 

  • de Groot CC, Marcelis LFM, van der Boogaard R, Lambers H (2001) Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell Environ 24:1309–1317

    Article  Google Scholar 

  • de Groot CC, van den Boogaard R, Marcelis LFM, Harbinson J, Lambers H (2003) Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. J Exp Bot 54:1957–1967

    Article  PubMed  Google Scholar 

  • Eveland AL, Jackson DP (2011) Sugars, signalling, and plant development. J Exp Bot 3:1–11

    Google Scholar 

  • Fischinger SA, Drevon J-J, Claassen N, Schulze J (2006) Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation. J Plant Physiol 163:987–995

    Article  CAS  PubMed  Google Scholar 

  • George TS, Fransson A, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann EK (ed) Phosphorus in action, soil biology. Springer, Berlin, pp 245–271

    Chapter  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, Udvardi MK (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinf 10:441

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144(2):752–2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (2010) Interactions between nitrogen, phosphorus and potassium determine growth and N2 fixation in white clover and ryegrass leys. Nutr Cycl Agroecosyst 87:327–338

    Article  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Graham PH (2005) The importance of nitrogen fixation to soybean crop** in South America. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 25–42

    Chapter  Google Scholar 

  • Hurry V, Strand A, Furbank R, Stitt M (2000) The role of inorganic phosphate in the development of freezing tolerance and the acclimation of photosynthesis to low temperature is revealed by pho mutants of Arabidopsis thaliana. Plant J 24:383–396

    Article  CAS  PubMed  Google Scholar 

  • Ingestad T, Ã…gren G (1991) The influence of plant nutrition on biomass allocation. Ecol Appl 1:168–174

    Article  PubMed  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665

    Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kaschuk G, Yind X, Hungria X, Leffelaar PA, Giller KE, Kuyper TW (2012) Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environ Exp Bot 76:1–6

    Article  CAS  Google Scholar 

  • Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 64:1439–1453

    Article  Google Scholar 

  • Lambers H, Scheurwater I, Atkins OK (1996) Respiratory patterns in root in relation to their function. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker Inc, New York, pp 323–362

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse PJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Larimer AL, Bever JD, Clay K (2010) The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148

    Article  Google Scholar 

  • Le Roux MR, Ward CL, Botha FC, Valentine AJ (2006) Routes of pyruvate synthesis in phosphorous-deficient lupin roots and nodules. New Phytol 169:399–408

    Article  PubMed  Google Scholar 

  • Le Roux MR, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48:102–109

    Article  Google Scholar 

  • Lea PJ, Miflin BJ (2010) Nitrogen assimilation and its relevance to crop improvement. Annu Plant Rev 42:1–40

    Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutous-Thevenot P, Maurousset FM, Girousse C, Lemonnier P, Parilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:1–21

    Article  Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Kuster H (2013) Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 8(5):e64377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  CAS  PubMed  Google Scholar 

  • Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3:428–437

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  CAS  PubMed  Google Scholar 

  • Lui J, Uhde-Stone C, Li A, Vance CP, Allan DL (2001) A phosphate transporter with enhanced expression in proteoid roots. Plant Soil 237:257–266

    Article  Google Scholar 

  • Lynch JP (2015) Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ 38:1775–1784

    Article  PubMed  Google Scholar 

  • Lynch JP, Beebe SE (1995) Adaptation of bean (Phaseolus vulgaris L.) to low phosphorus availability. Hortscience 30:1165–1171

    CAS  Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs and phosphorus acquisition. Plant Soil 269:45–56

    Article  CAS  Google Scholar 

  • Magadlela A, Kleinert A, Dreyer LL, Valentine AJ (2014) Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem. Aust J Bot 62:1–9

    Article  CAS  Google Scholar 

  • Magadlela A, Vardien W, Kleinert A, Steenkamp ET, Valentine AJ (2016) Variable P supply affects N metabolism in a legume tree, Virgilia divaricata, from nutrient-poor Mediterranean-type ecosystems. Funct Plant Biol 43:287–297

    Article  CAS  Google Scholar 

  • Makoi JHJR, Chimpango SBM, Dakora FD (2010) Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica 48:143–155

    Article  CAS  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  • Minchin FR, Witty JF (2005) Respiratory/carbon costs of symbiotic nitrogen fixation in legumes. In: Lambers H, Ribas-Carbo M (eds) Plant respiration. Springer, Dordrecht, pp 195–205

    Chapter  Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonisation in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2009) Arbuscular mycorrhizae affect the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4 + nutrition. Soil Biol Biochem 41:2115–2121

    Article  CAS  Google Scholar 

  • Mulley G, White JP, Karunakaran R, Prell J, Bourdes A, Bunnewell S, Hill L, Poole PS (2011) Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol 80:147–167

    Article  Google Scholar 

  • Nielsen KL, Bouma TJ, Lynch J, Eissenstat DM (1998) Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol 139:647–656

    Article  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effects of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    Article  CAS  PubMed  Google Scholar 

  • Niu YF, Chai RS, ** GL, Wang H, Tang CX, Zhang YS (2012) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 118:1–18

    Google Scholar 

  • Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    Article  CAS  PubMed  Google Scholar 

  • Peuke AD (2010) Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J Exp Bot 61:635–655

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC (2004) Plant response to stress: biochemical adaptations to phosphate deficiency. In: Goodman R (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 976–980

    Chapter  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Fernie AR, van Dongen JT (2009) Alternative oxidase: a defence against metabolic fluctuations? Physiol Plant 137:371–382

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rychter AM, Rao IM (2005) Role of phosphorus in photosynthetic carbon metabolism. In: Pessarakli M (ed) Handbook of photosynthesis. Taylor & Francis Group, Tucson, pp 123–148

    Google Scholar 

  • Sa TM, Israel DW (1991) Energy status and function of phosphorus deficient soya bean nodules. Plant Physiol 97:928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze J (2003) Source-sink manipulations suggest an N-feedback mechanism for the drop in N2 fixation during pod-filling in pea and broad bean. J Plant Physiol 160:531–537

    Article  CAS  PubMed  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137

    Article  CAS  Google Scholar 

  • Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shane MW, Cramer MD, Funayama-Noguchi S, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and alternative oxidase. Plant Physiol 135:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialised ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous to ‘cluster roots’. Plant Cell Environ 10:1989–1999

    Article  Google Scholar 

  • Sprent JI, James EK (2008) Legume-rhizobia symbiosis: an anorexic model. New Phytol 179:3–5

    Article  PubMed  Google Scholar 

  • Streeter JG (1992) Transport and metabolism of carbon and nitrogen in legume nodules. Adv Bot Res 18:130–187

    Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM, Schulze JM (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140:21–31

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J, Tran LSP (2014) N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J Plant Physiol 171:407–410

    Article  CAS  PubMed  Google Scholar 

  • Thuynsma R, Valentine AJ, Kleinert A (2014) Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. J Plant Physiol 17:285–291

    Article  Google Scholar 

  • Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006) Update on ureide degradation in legumes. J Exp Bot 57:5–12

    Article  CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. Annu Plant Rev 42:207–248

    CAS  Google Scholar 

  • Van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújob WL, Nunes-Nesib A, Fernie AR (2011) Regulation of respiration in plants: a role for alternative metabolic pathways. J Plant Physiol 168:1434–1443

    Article  PubMed  Google Scholar 

  • Vance CP (2008) Plants without arbuscular mycorrhizae. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorous interactions, vol 7. Springer, Berlin, pp 117–142

    Chapter  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation of exquise adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vanleberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  Google Scholar 

  • Vardien W, Mesjasz-Pryzbylowicz J, Pryzbylowicz WJ, Wang Y, Steenkamp ET, Valentine AJ (2014) Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. J Plant Physiol 171:1732–1739

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbiosis: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  Google Scholar 

  • Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29:192–201

    Article  CAS  PubMed  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Yin X, van Laar HH (2005) Crop systems dynamics – an Ecophysiological simulation model for genotype-by-environment interaction. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signalling and adaptation in plants. J Integr Plant Biol 56:192–220

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z-L (2009) Carbon and nitrogen nutrient balance signalling in plants. Plant Signal Behav 4:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Ding Y, Lui H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleysia Kleinert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kleinert, A., Thuynsma, R., Magadlela, A., Benedito, V.A., Valentine, A.J. (2017). Metabolism and Transport of Carbon in Legume Nodules Under Phosphorus Deficiency. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer, Cham. https://doi.org/10.1007/978-3-319-55729-8_4

Download citation

Publish with us

Policies and ethics

Navigation