A Penalty Approach for Normalizing Feature Distributions to Build Confounder-Free Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Translating machine learning algorithms into clinical applications requires addressing challenges related to interpretability, such as accounting for the effect of confounding variables (or metadata). Confounding variables affect the relationship between input training data and target outputs. When we train a model on such data, confounding variables will bias the distribution of the learned features. A recent promising solution, MetaData Normalization (MDN), estimates the linear relationship between the metadata and each feature based on a non-trainable closed-form solution. However, this estimation is confined by the sample size of a mini-batch and thereby may cause the approach to be unstable during training. In this paper, we extend the MDN method by applying a Penalty approach (referred to as PDMN). We cast the problem into a bi-level nested optimization problem. We then approximate this optimization problem using a penalty method so that the linear parameters within the MDN layer are trainable and learned on all samples. This enables PMDN to be plugged into any architectures, even those unfit to run batch-level operations, such as transformers and recurrent models. We show improvement in model accuracy and greater independence from confounders using PMDN over MDN in a synthetic experiment and a multi-label, multi-site dataset of magnetic resonance images (MRIs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeli, E., et al.: Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183, 425–437 (2018)

    Article  Google Scholar 

  2. Adeli, E., et al.: Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain. Neuroimage, 223, 117293 (2020)

    Google Scholar 

  3. Agarwal, A., Kakade, S.M., Lee, J.D., Mahajan, G.: On the theory of policy gradient methods: optimality, approximation, and distribution shift. J. Mach. Learn. Res. 22(98), 1–76 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. ar**v preprint ar**v:1607.06450 (2016)

  5. Baharlouei, S., Nouiehed, M., Beirami, A., Razaviyayn, M.: R\(\backslash \)’enyi fair inference. ar**v preprint ar**v:1906.12005 (2019)

  6. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. ar**v preprint ar**v:2102.04306 (2021)

  7. Delano-Wood, L., et al.: Heterogeneity in mild cognitive impairment: differences in neuropsychological profile and associated white matter lesion pathology. J. Int. Neuropsychol. Soc. 15(6), 906–914 (2009)

    Article  Google Scholar 

  8. Deshmukh, S., Khaparde, A.: Faster region-convolutional neural network oriented feature learning with optimal trained recurrent neural network for bone age assessment for pediatrics. Biomed. Signal Process. Control, 71, 103016 (2022)

    Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  10. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3d residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  13. Lahiri, A., Alipour, K., Adeli, E., Salimi, B.: Combining counterfactuals with shapley values to explain image models. ar**v preprint ar**v:2206.07087 (2022)

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, T.Y., Kannan, A., Drake, A., Bertin, M., Wan, N.: Bridging the generalization gap: Training robust models on confounded biological data. ar**v preprint ar**v:1812.04778 (2018)

  16. Liu, X., Li, B., Bron, E.E., Niessen, W.J., Wolvius, E.B., Roshchupkin, G.V.: Projection-wise disentangling for fair and interpretable representation learning: application to 3D facial shape analysis. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 814–823. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_78

    Chapter  Google Scholar 

  17. Lu, M., et al.: Metadata normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10917–10927 (2021)

    Google Scholar 

  18. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  19. Neto, E.C.: Causality-aware counterfactual confounding adjustment for feature representations learned by deep models. ar**v preprint ar**v:2004.09466 (2020)

  20. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  21. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  22. Tartaglione, E., Barbano, C.A., Grangetto, M.: End: entangling and disentangling deep representations for bias correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13508–13517 (2021)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  24. Yao, Z., Cao, Y., Lin, Y., Liu, Z., Zhang, Z., Hu, H.: Leveraging batch normalization for vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 413–422 (2021)

    Google Scholar 

  25. Yong, H., Huang, J., Meng, D., Hua, X., Zhang, L.: Momentum batch normalization for deep learning with small batch size. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 224–240. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_14

    Chapter  Google Scholar 

  26. Kwon, D., et al.: Extracting patterns of morphometry distinguishing HIV associated neurodegeneration from mild cognitive impairment via group cardinality constrained classification. Hum. Brain Mapp. 37(12), 4523–4538 (2016)

    Article  Google Scholar 

  27. Zhao, Q., Adeli, E., Pohl, K.M.: Training confounder-free deep learning models for medical applications. Nat. Commun. 11(1), 1–9 (2020)

    Article  Google Scholar 

  28. Zhong, G., Wang, L.N., Ling, X., Dong, J.: An overview on data representation learning: from traditional feature learning to recent deep learning. J. Finan. Data Sci. 2(4), 265–278 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by NIH Grants (AA017347, MH113406, and MH098759) and Stanford Institute for Human-Centered AI (HAI) Google Cloud Platform (GCP) Credit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Adeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vento, A., Zhao, Q., Paul, R., Pohl, K.M., Adeli, E. (2022). A Penalty Approach for Normalizing Feature Distributions to Build Confounder-Free Models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation