Harmonization with Flow-Based Causal Inference

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Heterogeneity in medical data, e.g., from data collected at different sites and with different protocols in a clinical study, is a fundamental hurdle for accurate prediction using machine learning models, as such models often fail to generalize well. This paper leverages a recently proposed normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM), in order to achieve harmonization of such data. A causal model is used to model observed effects (brain magnetic resonance imaging data) that result from known confounders (site, gender and age) and exogenous noise variables. Our formulation exploits the bijection induced by flow for the purpose of harmonization. We infer the posterior of exogenous variables, intervene on observations, and draw samples from the resultant SCM to obtain counterfactuals. This approach is evaluated extensively on multiple, large, real-world medical datasets and displayed better cross-domain generalization compared to state-of-the-art algorithms. Further experiments that evaluate the quality of confounder-independent data generated by our model using regression and classification tasks are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. ar**v preprint ar**v:1907.02893 (2019)

  2. Armstrong, N.M., An, Y., Beason-Held, L., Doshi, J., Erus, G., Ferrucci, L., Davatzikos, C., Resnick, S.M.: Predictors of neurodegeneration differ between cognitively normal and subsequently impaired older adults. Neurobiol. Aging 75, 178–186 (2019)

    Article  Google Scholar 

  3. Bashyam, V.M., et al.: Medical image harmonization using deep learning based canonical map**: Toward robust and generalizable learning in imaging. ar**v preprint ar**v:2010.05355 (2020)

  4. Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. 20(1), 973–978 (2019)

    MATH  Google Scholar 

  5. Chen, A.A., Beer, J.C., Tustison, N.J., Cook, P.A., Shinohara, R.T., Shou, H.: Removal of scanner effects in covariance improves multivariate pattern analysis in neuroimaging data. bioRxiv, p. 858415 (2020)

    Google Scholar 

  6. Davatzikos, C.: Machine learning in neuroimaging: progress and challenges. Neuroimage 197, 652 (2019)

    Article  Google Scholar 

  7. Dolatabadi, H.M., Erfani, S., Leckie, C.: Invertible generative modeling using linear rational splines. ar**. Acad. Radiol. 20(12), 1566–1576 (2013)

    Article  Google Scholar 

  8. Doshi, J., et al.: Muse: multi-atlas region segmentation utilizing ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage 127, 186–195 (2016)

    Article  Google Scholar 

  9. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. In: Advances in Neural Information Processing Systems, pp. 7511–7522 (2019)

    Google Scholar 

  10. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Habes, M., et al.: The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans. Alzheimer’s Dement. 17(1), 89–102 (2021)

    Article  Google Scholar 

  13. Hegenscheid, K., Kühn, J.P., Völzke, H., Biffar, R., Hosten, N., Puls, R.: Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based ship study. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, vol. 181, pp. 748–759. Georg Thieme Verlag KG Stuttgart \(\cdot \) New York (2009)

    Google Scholar 

  14. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (adni): mri methods. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  15. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8(1), 118–127 (2007)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ar**v preprint ar**v:1312.6114 (2013)

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  19. Morris, C.N.: Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc. 78(381), 47–55 (1983)

    Article  MathSciNet  Google Scholar 

  20. Moyer, D., Gao, S., Brekelmans, R., Galstyan, A., Ver Steeg, G.: Invariant representations without adversarial training. Adv. Neural. Inf. Process. Syst. 31, 9084–9093 (2018)

    Google Scholar 

  21. Moyer, D., Ver Steeg, G., Tax, C.M., Thompson, P.M.: Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84(4), 2174–2189 (2020)

    Article  Google Scholar 

  22. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. ar**v preprint ar**v:1912.02762 (2019)

  23. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. In: Advances in Neural Information Processing Systems, pp. 2338–2347 (2017)

    Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  25. Pawlowski, N., Castro, D.C., Glocker, B.: Deep structural causal models for tractable counterfactual inference. ar**v preprint ar**v:2006.06485 (2020)

  26. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  27. Pearl, J., et al.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009)

    Article  MathSciNet  Google Scholar 

  28. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference. The MIT Press, Cambridge (2017)

    Google Scholar 

  29. Pomponio, R., et al.: Harmonization of large mri datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 208, 116450 (2020)

    Google Scholar 

  30. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. 23(8), 3295–3301 (2003)

    Article  Google Scholar 

  31. Robinson, R., et al.: Image-level harmonization of multi-site data using image-and-spatial transformer networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 710–719. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_69

    Chapter  Google Scholar 

  32. Schölkopf, B.: Causality for machine learning. ar**v preprint ar**v:1911.10500 (2019)

  33. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. Plos Med. 12(3), e1001779 (2015)

    Google Scholar 

  34. Tustison, N.J., et al.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  35. Wachinger, C., Rieckmann, A., Pölsterl, S., Initiative, A.D.N., et al.: Detect and correct bias in multi-site neuroimaging datasets. Med. Image Anal. 67, 101879 (2021)

    Google Scholar 

  36. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Ben Glocker, Nick Pawlowski and Daniel C. Castro for suggestions. This work was supported by the National Institute on Aging (grant numbers RF1AG054409 and U01AG068057) and the National Institute of Mental Health (grant number R01MH112070). Pratik Chaudhari would like to acknowledge the support of the Amazon Web Services Machine Learning Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongguang Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 216 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Chaudhari, P., Davatzikos, C. (2021). Harmonization with Flow-Based Causal Inference. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation