Projection-Wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention ā€“ MICCAI 2021 (MICCAI 2021)

Abstract

Confounding bias is a crucial problem when applying machine learning to practice, especially in clinical practice. We consider the problem of learning representations independent to multiple biases. In literature, this is mostly solved by purging the bias information from learned representations. We however expect this strategy to harm the diversity of information in the representation, and thus limiting its prospective usage (e.g., interpretation). Therefore, we propose to mitigate the bias while kee** almost all information in the latent representations, which enables us to observe and interpret them as well. To achieve this, we project latent features onto a learned vector direction, and enforce the independence between biases and projected features rather than all learned features. To interpret the map** between projected features and input data, we propose projection-wise disentangling: a sampling and reconstruction along the learned vector direction. The proposed method was evaluated on the analysis of 3D facial shape and patient characteristics (Nā€‰=ā€‰5011). Experiments showed that this conceptually simple method achieved state-of-the-art fair prediction performance and interpretability, showing its great potential for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Non-orthogonal basis vectors.

References

  1. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A Deeper look at dataset bias. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 37ā€“55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_2

    ChapterĀ  Google ScholarĀ 

  2. Adeli, E., et al.: Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183, 425ā€“437 (2018)

    ArticleĀ  Google ScholarĀ 

  3. Pourhoseingholi, M.A., Baghestani, A.R., Vahedi, M.: How to control confounding effects by statistical analysis. Gastroenterol. Hepatol. Bed Bench 5, 79ā€“83 (2012)

    Google ScholarĀ 

  4. Zhou, B., Bau, D., Oliva, A., Torralba, A.: Interpreting deep visual representations via network dissection. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2131ā€“2145 (2019)

    ArticleĀ  Google ScholarĀ 

  5. Balakrishnan, G., **ong, Y., **a, W., Perona, P.: Towards causal benchmarking of bias in face analysis algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 547ā€“563. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_32

    ChapterĀ  Google ScholarĀ 

  6. **e, Q., Dai, Z., Du, Y., Hovy, E., Neubig, G.: Controllable invariance through adversarial feature learning. In: NIPS (2017)

    Google ScholarĀ 

  7. Adeli, E., et al.: Representation learning with statistical independence to mitigate bias. In: WACV (2021)

    Google ScholarĀ 

  8. Louizos, et al.: The variational fair autoencoder. In: ICLR (2016)

    Google ScholarĀ 

  9. Creager, E., et al.: Flexibly fair representation learning by disentanglement. In: PMLR (2019)

    Google ScholarĀ 

  10. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)

    Google ScholarĀ 

  11. Botros, P., Tomczak, J.M.: Hierarchical vampprior variational fair auto-encoder. ar**v preprint ar**v: 1806.09918 (2018)

    Google ScholarĀ 

  12. Jaddoe, V.W., Mackenbach, J.P., Moll, H.A., Steegers, E.A., Tiemeier, H., Verhulst, F.C., et al.: The generation R study: study design and cohort profile. Eur. J. Epidemiol. 21, 475ā€“484 (2006)

    ArticleĀ  Google ScholarĀ 

  13. Vellido, A.: The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 32(24), 18069ā€“18083 (2019). https://doi.org/10.1007/s00521-019-04051-w

    ArticleĀ  Google ScholarĀ 

  14. HƤrdle, W.K., Simar, L.: Canonical correlation analysis. In: Applied Multivariate Statistical Analysis, pp. 361-372. Springer, Heidelberg (2003).https://doi.org/10.1007/978-3-540-72244-1_14

  15. 3dMD. https://3dmd.com/. Accessed Feb 3 2021

  16. Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3D morphable models. Int. J. Comput. Vis. 126, 233ā€“254 (2017)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  17. Muggli, E., Matthews, H., Penington, A., et al.: Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age. JAMA Pediatr. 171(8), 771ā€“780 (2017)

    ArticleĀ  Google ScholarĀ 

  18. Gong, S., Chen, L., Bronstein, M., Zafeiriou, S.: SpiralNet++: a fast and highly efficient mesh convolution operator. In: ICCVW (2019)

    Google ScholarĀ 

  19. Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M.: Variational autoencoder for regression: application to brain aging analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 823ā€“831. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_91

    ChapterĀ  Google ScholarĀ 

  20. Zhao, Q., Adeli, E., Pohl, K.M.: Training confounder-free deep learning models for medical applications. Nat. Commun. 11, 6010 (2020)

    ArticleĀ  Google ScholarĀ 

  21. Belghazi, M.I., et al.: Mutual information neural estimation. In: ICML (2018)

    Google ScholarĀ 

  22. Tobias, M., et al.: Cross-ethnic assessment of body weight and height on the basis of faces. Pers. Individ. Differ. 55(4), 356ā€“360 (2013)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady V. Roshchupkin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 416 kb)

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Li, B., Bron, E.E., Niessen, W.J., Wolvius, E.B., Roshchupkin, G.V. (2021). Projection-Wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention ā€“ MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation