Log in

Synthesis of Cobalt Ferrite/Piezoelectric Composite Particles for Use as Magnetoelectric Elements in Bone Implants

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The issues of designing bone implants capable of creating an electrical stimulus for bone tissue regeneration under the influence of an external magnetic field are considered. A promising method for generating local electric fields is the use of magnetoelectric (multiferroid) micro- and nanoparticles that are polarized under the action of an external magnetic field and create electric fields comparable in amplitude to endogenous ones. Of practical interest are composite magnetoelectric particles consisting of a ferrimagnetic core and a piezoelectric shell brought into close mechanical contact. Modeling the magnetoelectric effect in a composite particle is carried out; composite particles with cobalt ferrite as a magnetostrictor are fabricated, and the issues of the chemical interaction of phases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kargol, A., Malkinski, L., and Caruntu, G., Biomedical applications of multiferroic nanoparticles, Advanced Magnetic Materials, Malkinski, L., Ed., InTech, 2012, pp. 89–118.

    Google Scholar 

  2. Pavalko, F.M., Norvell, S.M., Burr, D.B., et al., A model for mechanotransduction in bone cells: The load-bearing mechanosomes, J. Cell Biochem., 2003, vol. 88, no. 1, pp. 104–112.

    Article  CAS  PubMed  Google Scholar 

  3. Liedert, A., Kaspar, D., Blakytny, R., Claes, L., and Ignatius, A., Signal transduction pathways involved in mechanotransduction in bone cells, Biochem. Biophys. Res. Commun., 2006, vol. 349, no. 1, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  4. Khatua, C., Bhattacharya, D., Kundu, B., et al., Multiferroic reinforced bioactive glass composites for bone tissue engineering applications, Adv. Eng. Mater., 2018, vol. 20, no. 12, art. ID 1800329.

  5. Khatua, C., Bodhak, S., Kundu, B., and Balla, V.K., In vitro bioactivity and bone mineralization of bismuth ferrite reinforced bioactive glass composites, Materia-lia, 2018, vol. 4, pp. 361–366.

    Article  Google Scholar 

  6. Khatua, C., Sengupta, S., Kundu, B., et al., Enhancedstrength, in vitro bone cell differentiation and mineralization of injectable bone cement reinforced with multiferroic particles, Mater. Des., 2019, vol. 167, art. ID 107628.

  7. Ribeiro, C., Correia, V., Martins, P., et al., Provingthe suitability of magnetoelectric stimuli for tissue engineering applications, Colloids Surf., B, 2016, vol. 140, pp. 430–436.

    Article  CAS  Google Scholar 

  8. Hermenegildo, B., Ribeiro, C., Pérez-Álvarez, L., et al., Hydrogel-based magnetoelectric microenvironments for tissue stimulation, Colloids Surf., B, 2019, vol. 181, pp. 1041–1047.

    Article  CAS  Google Scholar 

  9. Fernandes, M., Correia, D.M., Ribeiro, C., et al., Bioinspired three-dimensional magneto-active scaffolds for bone tissue engineering, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 48, pp. 45265–45275.

    Article  CAS  PubMed  Google Scholar 

  10. Tang, B., Zhuang, J., Wang, L., et al., Harnessing cell dynamic responses on magnetoelectric nanocomposite films to promote osteogenic differentiation, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 9, pp. 7841–7851.

    Article  CAS  PubMed  Google Scholar 

  11. Palneedi, H., Annapureddy, V., Priya, S., and Ryu, J., Status and perspectives of multiferroic magnetoelectric composite materials and applications, Actuators, 2016, vol. 5, no. 1, pp. 1–9.

    Article  Google Scholar 

  12. Islam, R.A. and Priya, S., Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites, Adv. Condens. Matter. Phys., 2012, vol. 2012, art. ID 320612. http://www.hindawi.com/journals/acmp/2012/320612/.

  13. Henrichs, L.F., Mu, X., Scherer, T., Gerhards, U., et al., First-time synthesis of magnetoelectric core–shell composite via conventional solid-state reaction, Nanoscale, 2020, vol. 12, no. 4, pp. 15677–15686.

    Article  CAS  PubMed  Google Scholar 

  14. Tikhonova, S.A., Evdokimov, P.V., Filippov, Ya.Yu., et al., Electro- and magnetoactive materials in medicine: A review of existing and potential areas of application, Inorg. Mater., 2020, vol. 56, no. 13, pp. 1–19.

    Article  Google Scholar 

  15. The Materials Project. https://materialsproject.org/.

  16. Fritsch, D. and Ederer, C., First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4, Phys. Rev. B, 2012, vol. 86, art. ID 014406.

  17. Nan, C.-W., Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, 1994, vol. 50, no. 9, pp. 6082–6088.

    Article  CAS  Google Scholar 

  18. Anantharamaiahab, P.N. and Joy, P.A., Enhancing the strain sensitivity of CoFe2O4 at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 15, pp. 10516–10527.

    Article  Google Scholar 

  19. Houshiar, M., Zebhi, F., Razi, Z.J., et al., Synthesisof cobalt ferrite (CoFe2O4) nanoparticles using combustion, co-precipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties, J. Magn. Magn. Mater., 2014, vol. 371, pp. 43–48.

    Article  CAS  Google Scholar 

  20. Raidongia, K., Nag, A., Sundaresan, A., and Rao, C.N.R., Multiferroic and magnetoelectric properties of core-shell CoFe2O4 ⋅ BaTiO3 nanocomposites, Adv. Phys. Lett., 2010, vol. 97, art. ID 062904.

  21. Pechini, M.P., Method of preparing lead and alkaline-earth titanates and niobates and coating method usingthe same to form a capacitor, US Patent 3.330.697, 1967.

Download references

ACKNOWLEDGMENTS

The results presented were obtained on equipment purchased with funds from the Moscow University Development Program.

Funding

This work was financially supported by the Russian Science Foundation (grant no. 19-19-00587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tikhonova.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, S.A., Xu, X., Evdokimov, P.V. et al. Synthesis of Cobalt Ferrite/Piezoelectric Composite Particles for Use as Magnetoelectric Elements in Bone Implants. Inorg. Mater. Appl. Res. 13, 393–404 (2022). https://doi.org/10.1134/S2075113322020393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322020393

Keywords:

Navigation