Log in

Perovskite Ceramics as New-Generation Materials for Orthopedic Applications

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The piezoelectric properties of ferroelectric ceramics have been widely investigated in the materials science community, but relatively less is known about such properties of natural living system. Inspired by the knowledge that the piezoelectric properties influence the metabolic activities of natural bone, the design and development of bone-mimicking electrically active synthetic orthopedic implant materials has gained an excellent distinction in the biomaterials community. In this perspective, the present article briefly reviews the origin of fundamental electrical responses in natural bone along with their biological consequences. In this sequence, the potentiality of multifunctional electrically active perovskites (CaTiO3, BaTiO3, Na0.5K0.5NbO3 etc.) as promising bone substitute has been discussed. The results of several published studies from the author’s research group are summarized to highlight the cytocompatibility and histocompatibility of those perovskites. Further, the influence of incorporation of these piezoelectric materials as secondary phases in a bioactive matrix in improving the electromechanical response of composite has also been discussed briefly. It is perceived that this review will stimulate further research to explore the biomedical applications of these functional oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Basu B, Katti D S, and Kumar A, Advanced Biomaterials: Fundamentals, Processing and Applications. Wiley, Hoboken (2009).

    Book  Google Scholar 

  2. Basu B, and Balani K, Advanced Structural Ceramics. Wiley, Hoboken (2009).

  3. Nath S, Kalmodia S, and Basu B, J Biomater Appl 27 (2011) 497.

    Article  Google Scholar 

  4. Nath S, Basu B, Mohanty M, and Mohanan PV, J Biomed Mater Res Part B: Appl Biomater 90B (2009) 547.

    Article  Google Scholar 

  5. Nath S, Bodhak S, and Basu B J Biomed Mater Res Part B Appl Biomater 88B (2009) 1.

    Article  Google Scholar 

  6. Basu B, Biomaterials Science and Tissue Engineering: Principles and Methods. Cambridge University Press, Cambridge (2017).

  7. Geetha M, Singh A K, Asokamani R, Gogia A K, Prog Mater Sci 54 (2009) 397.

    Article  Google Scholar 

  8. Basu B, and Ghosh S, Biomaterials for Musculoskeletal Regeneration Springer, Berlin(2017).

  9. Bassett CAL and Becker R O, Science 137 (1962) 1063.

    Article  Google Scholar 

  10. Friendenberg ZB, Dyer R, and, Brighton CT, J Dent Res 50 (1971) 635.

    Article  Google Scholar 

  11. Hastings GW, and Mahmud FA, J Biomed Eng 10 (1988) 515.

    Article  Google Scholar 

  12. Isaacson Brad M, and, Bloebaum Roy D, J Biomed Mater Res Part A 95A (2010) 1270.

    Article  Google Scholar 

  13. England TS, and Sharples NA, Nature 163 (1949) 487.

    Article  Google Scholar 

  14. England TS, Nature 166 (1950) 80.

    Google Scholar 

  15. Cook HF, Br J Appl Phys 2 (1951) 292.

    Article  Google Scholar 

  16. Singh S, and Saha S, Clin Orthop Relat Res 186 (1984) 249.

    Google Scholar 

  17. Shames MH, and Lavine LS, Clin Othop 355 (1964) 177.

    Google Scholar 

  18. Behari J, Kumar H, and Aruna R, Ann Biomed Eng 10 (1982) 139.

    Article  Google Scholar 

  19. Reddy GN, and Saha S, IEEE Trans Biomed Eng. BME 31 (3) (1984) 296.

    Article  Google Scholar 

  20. Shtraus VD, and Pfafrod GO, Mech Compos Mater 17 (1981) 716-720.

    Article  Google Scholar 

  21. Reinish GB, and Nowick AS, J Electrochem Soc 123 (1976) 1451.

    Article  Google Scholar 

  22. Yasuda I, J Japanese Orthop Surg Soc 28 (3) (1954) 267.

    Google Scholar 

  23. Fukada E, and Yasuda I, J Phys Soc Jap 12 (1957) 1158.

    Article  Google Scholar 

  24. Hastings GW, and Mahmud FA, J Biomed Eng 10 (1988) 515.

    Article  Google Scholar 

  25. Meyers M A, Chen P Y, Lin A Y M, Seki Y, Prog Mater Sci 53 (2008) 1.

    Article  Google Scholar 

  26. Fukada E, Yasuda, I, Jpn J App Phys 3 (1964) 117.

    Article  Google Scholar 

  27. Moss ML, Am J Orthod Dentofacial Orthop 112 (1997) 8.

    Article  Google Scholar 

  28. Lang SB, Nature 212 (1966) 704.

    Article  Google Scholar 

  29. Athenstaedt H, Z Zelljorsch Mirkrosk Anat 97 (1969) 537.

    Article  Google Scholar 

  30. Lang SB, Ferroelectrics. 34 (1981) 3.

    Article  Google Scholar 

  31. EI Messiery MA, Hastings GW, and Rakawski S, J Biomed Eng 1 (1979) 63.

    Article  Google Scholar 

  32. Hastings GW, El Messiery MA, and Rakowski S, Biomater 2 (1981) 225.

    Article  Google Scholar 

  33. Liu Y G, Jia D C, Zhou Y, Fang M H, and Huang Z H, Ceram Int 37 (2011) 647.

    Article  Google Scholar 

  34. Narayanan R, Seshadri S K, Kwon T Y, and Kim K H, J Biomed Mater Res B Appl Biomater 85 (2008) 279.

    Article  Google Scholar 

  35. Li H, Khor KA, Cheang P, Biomater 24 (2003) 949.

    Article  Google Scholar 

  36. Li H Khor, KA Cheang P, and Biomater 23 (2002) 85.

  37. Coreno J, and Coreno O, J Biomed Mater Res A 57 (2005) 478.

    Article  Google Scholar 

  38. Calixto de Andrade M, Tavares Filgueiras MR, and, Ogasawara T, J Biomed Mater Res. 46 (1999) 441.

  39. Takadama H, Kim HM, Kokubo T, and, Nakamura T, J Biomed Mater Res. 57 (2001) 441.

    Article  Google Scholar 

  40. Takadama H, Kim HM, Kokubo T, and, Nakamura T, Sci Technol Adv Mater 2 (2001) 389.

    Article  Google Scholar 

  41. Kaciulis S, Mattogno G, Pandolfi L, Cavalli M, Gnappi G, and Montenero A, Appl Surf Sci 151 (1999) 1.

    Article  Google Scholar 

  42. Manso M, Langlet M, and, Martinez-Duart JM, Mater Sci Eng C 23 (2003) 447.

    Article  Google Scholar 

  43. Wiff JP, Fuenzalida VM, Arias JL, and Fernandez MS, Mater Lett 61 (2007)2739.

    Article  Google Scholar 

  44. Wei D, Zhou Y, Jia D, and, Wang Y, J Biomed Mater Res Part B Appl Biomater 84B (2008) 444.

    Article  Google Scholar 

  45. Webster TJ, Ergun C, Doremus RH, and Lanford WA. J Biomed Mater Res 67A (2003) 975.

    Article  Google Scholar 

  46. Ergun C, Liu H, Halloran JW, and, Webster TJ, J Biomed Mater Res 80A (2007) 990.

    Article  Google Scholar 

  47. Dubey AK, Tripathi G, and Basu B, J Biomed Mater Res Part B Appl Biomater 95B (2010) 320.

  48. Ravikumar K, Boda S K, and, Basu B, Bioelectrochemistry 116 (2017) 52.

    Article  Google Scholar 

  49. Teng NC, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, and Yamashita K J Dent Res 80 (2001) 1925.

    Article  Google Scholar 

  50. Ravalioli A and Kraiewski A Bioceramics: Materials-Properties-Applications London Chapman & Hall (1992).

  51. Yang W, and Liu Z Biomedical Engineering TJST Tian** (1993).

  52. Jianqing F, Huipin Y, and **ngdong Z P Biomater 18 (1997) 1531.

  53. Chen XM, and Yang B Mater Lett 33 (1997) 237.

  54. Yang B, and Chen XM J Eur Ceram Soc 20 (2000) 1687.

    Article  Google Scholar 

  55. Rattanachan S, Miyashita Y, and Mutoh Y, Fract Mech Ceram 14 (2005) 297.

    Google Scholar 

  56. Okazaki K, Bull Am Ceram Soc. 63 (1984)1150.

    Google Scholar 

  57. Pisarenko GG, Chushko VM, and Kovalev SP, J Am Ceram Soc. 68 (1985) 259.

    Article  Google Scholar 

  58. Rattanachan S, Miyashita Y, and Mutoh Y, J Eur Ceram Soc 24 (2004) 775.

    Article  Google Scholar 

  59. Rattanachan S, Miyashita Y, and Mutoh Y, J Eur Ceram Soc 23 (2003) 1269.

    Article  Google Scholar 

  60. Zhan GD, Kuntz J, Wan J, Garay J, and Mukherjee AK, Mater Sc Eng A356 (2003) 443.

    Article  Google Scholar 

  61. Mehta K, and Virkar AV, J Am Ceram Soc 73 (1990) 567.

    Article  Google Scholar 

  62. Wang H, and Singh RN, Ferroelectrics 207 (1998) 555.

    Article  Google Scholar 

  63. Dubey AK, Basu B, Balani K, Guo R, and Bhalla AS, Int Ferroelectr 131 (2011) 119.

    Article  Google Scholar 

  64. Dubey AK, Basu B, Balani K, Guo R, and Bhalla, Ferroelectrics. 423 (2011) 63.

    Article  Google Scholar 

  65. Reddy S, Dubey AK, Basu B, Guo R and Bhalla AS, Int Ferroelectr 131 (2011) 147.

    Article  Google Scholar 

  66. Park JB, Kenner GH, Brown SD, and Scott JK, Artif Cell Blood Sub 5 (1977) 267.

    Google Scholar 

  67. Park JB, von Recum AF, Kenner GH, Kelly BJ, Coffeen WW, and Grether MF, J Biomed Mater Res 14 (1980) 269.

    Article  Google Scholar 

  68. Park JB, Kelly BJ, Kenner GH, von Recum AF, Grether MF, and Coffeen WW, J Biomed Mater Res 15 (1981)103.

    Article  Google Scholar 

  69. Park YJ, Hwang KS, Song JE, Ong JL, and Rawls HR, Biomater 23 (2002) 3859.

    Article  Google Scholar 

  70. Hwang KS, Song JE, Yang HS, Park YJ, Ong JL, and Rawls HR, J Mater Sci Mater Med 13 (2002) 133.

    Article  Google Scholar 

  71. Ferreira AM, Noris-Suarez K, Lira-Olivares J, Feijoo JL, and Gonzalez G, Acta Microsc. 16 (2007) 122.

  72. Hoepfner TP, and Case ED, J Biomed Mater Res 60 (2002) 643.

    Article  Google Scholar 

  73. More N, and Kapusetti G, Med Hypotheses 108 (2017) 10.

    Article  Google Scholar 

  74. Ramadan Khaled S, Sameoto D, and Evoy S, Smart Mater Struct 23 (2014) 033001.

    Article  Google Scholar 

  75. Harrison JS, and Ounaies Z Piezoelectric polymers Encyclopedia of Polymer Science and Technology, Wiley, New York (2002) 474.

  76. Kenji O, Hiroji O, and Keiko K, J Appl Phys 81(1997) 760.

  77. Federico C, Rossi DD, Kornbluh R, Pelrine RE, and Sommer-Larsen P, eds Dielectric Elastomers as Electromechanical Transducers Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam (2011).

  78. Federico C, and Smela E, eds Biomedical Applications of Electroactive Polymer Actuators. Wiley, Hoboken (2009).

  79. Clarisse R, Sencadas V, Correia DM, and Lanceros-Méndez S, Coll Surf B Biointerfaces 136 (2015) 46.

    Article  Google Scholar 

  80. João G, Serrado J, Nunes V, Sencadas, and Lanceros-Méndez S, Smart Mater Struct 19 (2010) 065010.

    Article  Google Scholar 

  81. Guo HF, Li ZS, Dong SW, Chen WJ, Deng L, Wang YF, and Ying DJ, Coll Surf B: Biointerfaces 96 (2012) 29.

    Article  Google Scholar 

  82. Ribeiro C, Pärssinen J, Sencadas V, Correia V, Miettinen S, Hytönen VP, and, Lanceros-Méndez S, J Biomed Mater Res A 103 (2015) 2172.

    Article  Google Scholar 

  83. Martins P M, Ribeiro S, Clarisse Ribeiro, Vitor Sencadas,. Gomes A C, Gama F M, and Senentxu Lanceros-Méndez. RSC Adv 3 (2013) 17938.

    Article  Google Scholar 

  84. Ravikumar K, Kar G P, Bose, S, and Basu B, RSC Adv (2016) 10837.

    Article  Google Scholar 

  85. Beloti MM, de Oliveira PT, Gimenes R, Zaghete MA, Bertolini MJ and Rosa AL, J Biomed Mater Res 79A (2006) 282.

    Article  Google Scholar 

  86. Baxter F R, Turner I G, Bowen C R, Gittings J P, Chaudhuri J B, J Mater Sci Mater Med 20 (2009)1697.

    Article  Google Scholar 

  87. Itoh S, Nakamura S, Nakamura M, Shinomiyaa K, Yamashita K, Biomater. 27 (2006) 5572.

    Article  Google Scholar 

  88. Jacob J, More N, Kalia K and Kapusetti G, Inflamm Regen 38 (2018) 2.

    Article  Google Scholar 

  89. Nilsson K, Lidman J, Ljungstrom K, Kjellman C. Biocompatible material for implants, U.S. patent 6 (2003) 526 984 B1.

  90. Chen W, Yu Z, Pang J, Yu P, Tan G and Ning C, Materials 10 (2017) 345.

    Article  Google Scholar 

  91. Yu P, Ning C, Zhang Y, Tan G, Lin Z, Liu S, Wang X, Yang H, Li K, Yi X, Zhu Y, Mao C.. Theranostics 7(13) (2017) 3387.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Science and Engineering Research Board (SERB), DST, Govt. of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A.K., Ravikumar, K. & Basu, B. Perovskite Ceramics as New-Generation Materials for Orthopedic Applications. Trans Indian Inst Met 72, 1999–2010 (2019). https://doi.org/10.1007/s12666-018-1519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1519-1

Keywords

Navigation