Log in

Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLu x F4 Single Crystals

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of LiY1–xLu x F4 (x = 0, 0.25, 0.5, 0.65, 0.9) solid solution were grown by Bridgman–Stockbarger technique. Melting points determined by DSC monotonically varied with composition from 831 to 841 K when x increased. Interval between liquidus and solidus curves is not larger 1°C. This feature extremely favors to the growth of homogeneous single crystals from melt. Heat conductivity (κ) of solid solution is lower than that of LiYF4 and LiLuF4 components. In the region 0.25 ≤ x ≤ 0.65 at 300 K, κ = 4 ± 0.1 W/(m K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Thoma, C. F. Weaver, H. A. Friedman, et al., J. Phys. Chem. 65, 1096 (1961).

    Article  CAS  Google Scholar 

  2. R. E. Thoma, G. D. Branton, R. A. Penneman, and T. K. Keenan, Inorg. Chem. 9, 1096 (1970).

    Article  CAS  Google Scholar 

  3. P. P. Fedorov, B. P. Sobolev, L. V. Medvedeva, and V. M. Reiterov, in Growth of Crystals, Ed. by E. I. Givargizov and A. M. Melnicova (Consultants Bureau. New York, London, 2002), Vol. 21, pp. 141–154.

    Article  CAS  Google Scholar 

  4. P. P. Fedorov, Russ. J. Inorg. Chem. 44, 1703 (1999).

    Google Scholar 

  5. B. P. Sobolev, The Rare Earth Trifluorides, Pt. 1: The High-Temperature Chemistry of the Rare Earth Trifluorides (Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  6. A. V. Goryunov, A. I. Popov, N. M. Khajdukov, and P. P. Fedorov, Mater. Res. Bull. 27, 213 (1992).

    Article  CAS  Google Scholar 

  7. P. P. Fedorov, L. V. Medvedeva, and B. P. Sobolev, Russ. J. Phys. Chem. 76, 337 (2002).

    Google Scholar 

  8. M. V. Zamoryanskaya, M. A. Petrova, V. Yu. Egorov, Russ. J. Inorg. Chem. 48, 1244 (2003).

    Google Scholar 

  9. P. P. Fedorov and L. V. Medvedeva, Russ. J. Inorg. Chem. 34, 1528 (1989).

    Google Scholar 

  10. N. Sarukura, Z. Liu, Y. Segawa, et al., Opt. Lett. 20, 294 (1995).

    Article  CAS  Google Scholar 

  11. I. M. Ranieri, K. Shimamura, K. Nakano, et al., J. Cryst. Growth 217, 145 (2000).

    Article  CAS  Google Scholar 

  12. I. M. Ranieri, K. Shimamura, K. Nakano, et al., J. Cryst. Growth 217, 151 (2000).

    Article  CAS  Google Scholar 

  13. A. Bensalah, K. Shimamura, V. Sudesh, et al., J. Cryst. Growth 223, 539 (2001).

    Article  CAS  Google Scholar 

  14. I. M. Ranieri, S. P. Morato, L. S. Courrol, et al., J. Alloys Compd. 344, 203 (2002).

    Article  CAS  Google Scholar 

  15. H. Sato, A. Bensalah, H. Machida, et al., J. Cryst. Growth 253, 221 (2003).

    Article  CAS  Google Scholar 

  16. M. R. Moncorge, A. Braud, P. Camy, and J. L. Doulan, in Handbook on Solid-State Lasers: Materials, Systems and Applications (Woodhead Publishing, Cambridge, 2013) pp. 28–53.

    Book  Google Scholar 

  17. A. S. Nizamutdinov, V. V. Semashko, A. K. Naumov, et al., Phys. Solid State 50, 1648 (2008).

    Article  CAS  Google Scholar 

  18. A. S. Nizamutdinov, V. V. Semashko, A. K. Naumov, et al., JETP Lett. 91, 21 (2010).

    Article  CAS  Google Scholar 

  19. M. A. Marisov, E. Yu. Koryakina, A. K. Naumov, et al., Proc. SPIE—Int. Soc. Opt. Eng., 7994, 79940F (2010).

    Google Scholar 

  20. M. Laroche, S. Girard, R. Moncourge, et al., Opt. Mater. 22, 147 (2003).

    Article  CAS  Google Scholar 

  21. A. S. Nizamutdinov, V. V. Semashko, A. K. Naumov, et al., J. Lumin. 127, 71 (2007).

    Article  CAS  Google Scholar 

  22. A. S. Nizamutdinov, V. V. Semashko, A. K. Naumov, et al., Proc. SPIE—Int. Soc. Opt. Eng. 7994, (2011), doi 10.1117/12.881885.10.1117/12.881885

    Google Scholar 

  23. L. A. Nurtdinova, V. V. Semashko, O. R. Akhtyamov, et al., JETP Lett. 96, 633 (2012).

    Article  Google Scholar 

  24. V. G. Gorieva, S. L. Korableva, M. A. Marisov, et al., Laser Phys. Lett. 13, 025802 (2016).

    Article  Google Scholar 

  25. A. A. Lyapin, V. G. Gorieva, S. L. Korableva, et al., Laser Phys. Lett. 13, 125801 (2016).

    Article  Google Scholar 

  26. P. P. Fedorov and I. I. Buchinskaya, Russ. Chem. Rev. 81, 1 (2012).

    Article  CAS  Google Scholar 

  27. P. A. Popov, P. P. Fedorov, S. V. Kuznetsov, et al., Dokl. Phys. 53, 198 (2008).

    Article  CAS  Google Scholar 

  28. P. A. Popov, N. V. Moiseev, D. N. Karimov, et al., Crystallogr. Rep. 60, 116 (2015).

    Article  CAS  Google Scholar 

  29. P. P. Fedorov and V. V. Osiko, in Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials, Ed. by P. Capper (Wiley, 2005) Ch. 11, pp. 339–355.

  30. P. A. Popov, A. A. Sidorov, E. A. Kul’chenkov, et al., Ionics 23, 233 (2017).

    Article  CAS  Google Scholar 

  31. I. A. Santos, D. Klimm, S. L. Baldochi, and I. M. Ranieri, Thermochim. Acta 552, 137 (2013).

    Article  Google Scholar 

  32. P. P. Fedorov, Thermochim. Acta 578, 33 (2014).

    Article  CAS  Google Scholar 

  33. I. R. Harris, H. Safi, N. A. Smith, et al., J. Mater. Sci. 18, 1235 (1983).

    Article  CAS  Google Scholar 

  34. P. I. Fedorov, P. P. Fedorov, and D. V. Drobot, Physicochemical Analysis of Anhydrous Salt Systems (Moscow Institute of Chemical Engineering–Moscow Institute of Fine Chemical Technology, Moscow, 1987) [in Russian].

    Google Scholar 

  35. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).

    Article  Google Scholar 

  36. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).

    Google Scholar 

  37. P. A. Popov, P. P. Fedorov, V. V. Semashko, et al., Dokl. Phys. 54, 221 (2009).

    Article  CAS  Google Scholar 

  38. P. A. Popov and P. P. Fedorov, Thermal Conduction in Fluoride Optical Materials (Desyatochka, Bryansk, 2012) [in Russian].

    Google Scholar 

  39. P. A. Popov, K. V. Dukel’skii, I. A. Mironov, et al., Dokl. Phys. 52, 7 (2007).

    Article  CAS  Google Scholar 

  40. P. A. Popov, P. P. Fedorov, V. A. Konyushkin, et al., Dokl. Phys. 53, 413 (2008).

    Article  CAS  Google Scholar 

  41. E. C. **mendes, U. Rocha, K. U. Kumar, et al., Appl. Phys. Lett. 108, 253103–1 (2016).

    Article  Google Scholar 

  42. M. S. Pudovkin, S. L. Korableva, A. O. Krasheninnicova, et al., J. Phys.: Conf. Ser. 560, 1 (2014).

    Google Scholar 

  43. W. Wu, J. Shen, P. Banerjee, and S. Zhou, Biomaterials 31, 7555 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Additional information

Original Russian Text © V.V. Semashko, S.L. Korableva, A.S. Nizamutdinov, S.V. Kuznetsov, A.A. Pynenkov, P.A. Popov, A.E. Baranchikov, K.N. Nishchev, V.K. Ivanov, P.P. Fedorov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 4, pp. 405–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semashko, V.V., Korableva, S.L., Nizamutdinov, A.S. et al. Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLu x F4 Single Crystals. Russ. J. Inorg. Chem. 63, 433–438 (2018). https://doi.org/10.1134/S0036023618040162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618040162

Navigation