Log in

Growth and characterization of Li3xLa2/3−xTiO3 single crystals with various Li compositions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li3xLa2/3−xTiO3 (LLT) single crystals with different Li compositions (x = 0.042–0.120) were grown by the traveling solvent floating zone (TSFZ) method. Because this material exhibits incongruent melting behavior, solvent of La2Ti2O7-poor composition rather than Li-rich LLT composition for a LLT feed was used. Crack- and inclusion-free single crystals were obtained for all the compositions. The Li composition in the grown crystals was lower than the nominal composition due to vaporization in the melt during growth. In addition, the anisotropic ionic conductivity of the annealed crystal was maximum at a Li composition of x = 0.059. The ionic conductivity along [100], σ[100] = 1.75 × 10–3 S·cm−1, is higher than that of [001], σ[001] = 7 × 10–4 S·cm−1, and the anisotropy σ[100]/σ[001] was determined to be 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115–1118

    Article  CAS  PubMed  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  3. Zheng F, Kotobuki M, Song S, Lai MO, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    Article  CAS  Google Scholar 

  4. Kataoka K, Nagata H, Akimoto J (2018) Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci Rep 8:9965

    Article  PubMed  PubMed Central  Google Scholar 

  5. Owens B, Skarstad P (1992) Ambient temperature solid state batteries. Solid State Ionics 53:665–672

    Article  Google Scholar 

  6. Chen C, **e S, Sperling E, Yang A, Henriksen G, Amine K (2004) Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system. Solid State Ionics 167:263–272

    Article  CAS  Google Scholar 

  7. Liang Y, Ji L, Guo B, Lin Z, Yao Y, Li Y, Alcoutlabi M, Qiu Y, Zhang X (2011) Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J Power Sources 196:436–441

    Article  CAS  Google Scholar 

  8. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  9. Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G (2018) All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. J Power Sources 382:160–175

    Article  CAS  Google Scholar 

  10. Banerjee A, Wang X, Fang C, Wu EA, Meng YS (2020) Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev 120:6878–6933

    Article  CAS  PubMed  Google Scholar 

  11. Ding Z, Li J, Li J, An C (2020) Review—interfaces: key issue to be solved for all solid-state lithium battery technologies. J Electrochem Soc 167:070541

    Article  Google Scholar 

  12. Boukamp BA, Huggins RA (1976) Lithium ion conductivity in lithium nitride. Phys Lett A 58:231–233

    Article  Google Scholar 

  13. Zhao Y, Daemen LL (2012) Superionic conductivity in lithium-rich anti-perovskites. J Am Chem Soc 134:15042–15047

    Article  CAS  PubMed  Google Scholar 

  14. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61:759–770

    Article  CAS  Google Scholar 

  15. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  CAS  PubMed  Google Scholar 

  16. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686

    Article  CAS  PubMed  Google Scholar 

  17. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    Article  CAS  Google Scholar 

  18. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693

    Article  CAS  Google Scholar 

  19. Inaguma Y, Chen LQ, Itoh M, Nakamura T (1994) Candidate compounds with perovskite structure for high lithium ionic-conductivity. Solid State Ionics 70(71):196–202

    Article  Google Scholar 

  20. Kawai H, Kuwano J (1994) Lithium ion conductivity of A-site deficient perovskite solid solution La0.67 − x Li3x TiO3. J Electrochem Soc 141:L78–L79

    Article  CAS  Google Scholar 

  21. Inaguma Y, Yu JD, Katsumata T, Itoh M (1997) Lithium ion conductivity in a perovskite lanthanum lithium titanate single crystal. J Ceram Soc Jpn 105:548–550

    Article  CAS  Google Scholar 

  22. Harada Y, Ishigaki T, Kawai H, Kuwano J (1998) Lithium ion conductivity of polycrystalline perovskite La0.67 − xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics 108:407–413

    Article  CAS  Google Scholar 

  23. Ibarra J, Varez A, Leon C, Santamaria J, Torres-Martinez LM, Sanz J (2000) Influence of composition on the structure and conductivity of the fast ionic conductors La2/3−xLi3xTiO3 (0.03≤x≤0.167). Solid State Ionics 134:219–228

    Article  CAS  Google Scholar 

  24. Várez A, Sanjuán ML, Laguna MA, Peña JI, Sanz J, Fuente GF (2001) Microstructural development of the La0.5Li0.5TiO3 lithium ion conductor processed by the laser floating zone (LFZ) method. J Mater Chem 11:125–130

    Article  Google Scholar 

  25. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990

    Article  CAS  Google Scholar 

  26. Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama Y, Minamimure S, Kobayashi C, Nagao M, Watauchi S, Tanaka I (2018) Crystal growth of La2/3−xLi3xTiO3 by the TSFZ method. R Soc Open Sci 5:181445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dono A, Cervera RB (2019) Solid state reaction synthesis and characterization of lithium lanthanum titanate lithium-ion conducting solid electrolyte with different Li to la content. Key Eng Mater 821:389–394

    Article  Google Scholar 

  29. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781

    Article  CAS  Google Scholar 

  30. Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 182:2046–2052

    Article  CAS  Google Scholar 

  31. Itoh M, Inaguma Y, Jung WH, Chen LQ, Nakamura T (1994) High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ionics 70:203–207

  32. Thangadurai V, Shukla AK, Gopalakrishnan J (1999) LiSr1.65□0.35Bi1.3Bi’1.7O9 (B = Ti, Zr; B’ = Nb, Ta): new lithium ion conductors based on the perovskite structure. Chem Mater 11:835–839

    Article  CAS  Google Scholar 

  33. Mizumoto K, Hayashi S (2000) Conductivity relaxation in lithium ion conductors with the perovskite-type structure. Solid State Ionics 127:241–251

    Article  CAS  Google Scholar 

  34. Yu R, Du QX, Zou BK, Wen ZY, Chen CH (2016) Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries. J Power Sources 306:623–629

    Article  CAS  Google Scholar 

  35. Robertson AD, Martin Garcia S, Coats A, West AR (1995) Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5-3xRE0.5+xTiO3:RE = La. Nd J Mater Chem 5:1405–1412

    Article  CAS  Google Scholar 

  36. Ali MdS, Sato N, Fukasawa I, Maruyama Y, Nagao M, Watauchi S, Tanaka I (2019) Crystal growth and characterization of LixLa(1–x)/3NbO3 by the traveling solvent floating zone method. Cryst Growth Des 19:6291–6295

    Article  CAS  Google Scholar 

  37. Ali MdS, Maruyama Y, Nagao M, Watauchi S, Tanaka I (2020) Lithium-ionic conductivity of LixLa(1–x)/3NbO3 single crystals grown by the TSFZ method. Solid State Ionics 350:115330

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported by JSPS KAKENHI, Grant Number 20K15377, 22H04609 and 23K13823, and the Graduate Program for Power Energy Professionals, Waseda University, from the MEXT WISE Program. The authors also gratefully acknowledge technical support from Ruma Parvin at the Independent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Maruyama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, Y., Ali, M.S., Okanda, K. et al. Growth and characterization of Li3xLa2/3−xTiO3 single crystals with various Li compositions. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05739-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05739-9

Keywords

Navigation