Log in

Phase Equilibria in the Quasibinary Li2O⋅2B2O3–Yb2O3⋅B2O3 System, Assessment of Stability, and Conductivity of Solid Solutions Based on Li2O⋅2B2O3

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using the methods of differential thermal analysis and X-ray powder diffraction, the Т–х phase diagram of the Li2O⋅2B2O3–Yb2O3⋅B2O3 system has been constructed. Phase diagram of this system belongs to the eutectic type and is characterized by the formation of limited Li2O⋅2B2O3–based solid solutions. The region of limited (1 – х)Li2O⋅B2O3хYb2O3⋅B2O3 solid solutions at 298–1038 K is x = 0–0.1 mole fraction of Yb2O3⋅B2O3 (or α-Li2O⋅2B2O3). Eutectic coordinates: 1038 K and ~17 mol % Yb2O3⋅B2O3. Depending on the thermal history, (1 – х)Li2O⋅2B2O3хYb2O3⋅B2O3 (x = 0–0.1) solid solutions are formed both in the form of polycrystals (annealed) and in the form of amorphous glasses (quenched). Glassy and polycrystalline samples of solid solutions α-Li2O⋅2B2O3 (x = 0, 0.05, and 0.1) were synthesized and their physico-chemical properties were studied. The temperature dependence of the standard Gibbs energy of the reaction of formation of solid solutions is estimated (0 ≤ х ≤ 0.1 at 573–1073 K). It is shown that the formation reaction of a solid solution based on Li2O⋅2B2O3 in the range 0 ≤ х ≤ 0.1 mole fraction Yb2O3⋅B2O3 is thermodynamically possible under standard conditions. Measured the electrical properties of (1 – х)Li2O⋅2B2O3хYb2O3⋅B2O3 (x = 0, 0.05, 0.1) glass samples solid solutions (x = 0–0.1) in the temperature range from 298 to 575 K. The temperature dependences of the direct current (dc) conductivity of α-Li2O⋅2B2O3–samples with different thermal histories (annealing or quenching) differ from each other. It was shown that the introduction of Yb2O3⋅B2O3 (x = 0–0.1) into (1 – х)Li2O⋅2B2O3хYb2O3⋅B2O3 glasses reduces the conductivity of the samples. The activation energies of conductivity of the glass samples are determined (66.6–90.7 kJ/mol). At temperatures >575 K, the conductivity of α-Li2O⋅2B2O3 glasses deviates from the Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. M. Asadov and E. S. Kuli-zade, J. Alloys Compd. 5, 23 (2020). https://doi.org/10.1016/j.jallcom.2020.155632

    Article  CAS  Google Scholar 

  2. N. Nitta, F. Wu, J. T. Lee, et al., Mater. Today 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  3. S. V. Pershina, A. A. Raskovalov, B. D. Antonov, et al., Russ. J. Phys. Chem. A 90, 2194 (2016). https://doi.org/10.1134/S0036024416110200

    Article  CAS  Google Scholar 

  4. B. Raguenet, G. Tricot, G. Silly, et al., Solid State Ionics 208, 25 (2012). https://doi.org/10.1016/j.ssi.2011.11.034

    Article  CAS  Google Scholar 

  5. N. B. Pimentel, V. R. Mastelaro, J.-C. M’Peko, et al., J. Non-Cryst. Solids 499, 272 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.024

    Article  CAS  Google Scholar 

  6. A. E. Medvedeva, L. S. Pechen, E. V. Makhonina, et al., Russ. J. Inorg. Chem. 64, 829 (2019). https://doi.org/10.1134/S003602361907012X

    Article  CAS  Google Scholar 

  7. L. D. Pye, V. D. Fréchette, and N. J. Kreidl, Borate Glasses: Structure, Properties, and Application (Plenum, New York, 1978). https://doi.org/10.1007/978-1-4684-3357-9

    Book  Google Scholar 

  8. F. Berkemeier, M. Shoar Abouzari, and G. Schmitz, Appl. Phys. Lett. 90, 113110 (2007). https://doi.org/10.1063/1.2713138

  9. R. Korthauer, Lithium-Ion Batteries. Basics and Applications (Springer, Germany, 2018). https://doi.org/10.1007/978-3-662-53071-9

    Book  Google Scholar 

  10. P. Knauth, Solid State Ionics 180, 911 (2009). https://doi.org/10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  11. A. Felts, Amorphous Inorganic Materials and Glasses (VCH, Weinheim, 1983).

    Google Scholar 

  12. A. V. Egorysheva, V. D. Volodin, and T. Milenov, Russ. J. Inorg. Chem. 50, 1810 (2005). https://doi.org/10.1134/S0036023610110185

    Article  CAS  Google Scholar 

  13. B. Douglas and S.-H. Ho, Structure and Chemistry of Crystalline Solids (Springer, Berlin, 2006).

    Google Scholar 

  14. M. M. Asadov and N. A. Akhmedova, Russ. J. Inorg. Chem. 63, 1617 (2018). https://doi.org/10.1134/S0036023618120021

    Article  CAS  Google Scholar 

  15. M. M. Asadov, A. N. Mammadov, D. B. Tagiev, et al., Mater. Res. Soc. Symp. Proc. 1765, 115 (2015). https://doi.org/10.1557/opl.2015.816

    Article  CAS  Google Scholar 

  16. V. T. Maltsev and S. A. Kutolin, Neorg. Khim. 24, 12 (1979).

    CAS  Google Scholar 

  17. M. I. Zargarova, N. A. Akhmedova, and E. S. Kuli-zade, Neorg. Khim. 40, 1389 (1995).

    CAS  Google Scholar 

  18. G. A. Sycheva and I. G. Polyakova, Glass Phys. Chem. 41, 590 (2015). https://doi.org/10.1134/S1087659615060152

    Article  CAS  Google Scholar 

  19. A. C. M. Rodrigues, R. Keding, and C. Russel, J. Non-Cryst. Solids 273, 53 (2000). https://doi.org/10.1016/S0022-3093(00)00143-5

    Article  CAS  Google Scholar 

  20. J. C. Christian, A. Mauger, and A. V. K. Zaghib, Lithium Batteries. Science and Technology (Springer Int., Switzerland, 2016). https://doi.org/10.1007/978-3-319-19108-9

    Book  Google Scholar 

  21. Sh. A. Gamidova, Russ. J. Inorg. Chem. 54, 141 (2009). https://doi.org/10.1134/S0036023609010240

    Article  Google Scholar 

  22. C. Chen, Y. Wu, A. Jiang, et al., J. Opt. Soc. Am. B: Opt. Phys. 6, 616 (1989). https://doi.org/10.1364/JOSAB.6.000616

    Article  CAS  Google Scholar 

  23. B. S. R. Sastry, and F. A. Hummel, J. Am. Ceram. Soc. 42, 218 (1959). https://doi.org/10.1111/j.1151-2916.1958.tb13496.x

    Article  Google Scholar 

  24. Zh. G. Bazarova, A. I. Nepomnyashchikh, A. A. Kozlov, et al., Russ. J. Inorg. Chem. 52, 1971 (2007). https://doi.org/10.1134/S003602360712025X

    Article  Google Scholar 

  25. M. M. Asadov and N. A. Akhmedova, Int. J. Thermophys. 35, 1749 (2014). https://doi.org/10.1007/s10765-014-1673-6

    Article  CAS  Google Scholar 

  26. S. F. Radaev, L. A. Murady, L. F. Malakhova, et al., Sov. Phys. Crystallogr. 34, 842 (1989).

    Google Scholar 

  27. R. S. Bubnova and S. K. Filatov, High-Temperature Crystal Chemistry of Borates and Borosilicates (Nauka, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  28. G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003)

    Book  Google Scholar 

  29. J. R. Macdonald and W. B. Johnson, in Impedance Spectroscopy Theory, Experiment, and Applications, Ed. by E. Barsoukov and J. R. Macdonald, 2nd ed. (Wiley, New Yorkk, 2005), p. 1.

  30. G. F. Voronin and I. A. Zaitseva, Russ. J. Phys. Chem. 70, 1116 (1996).

    Google Scholar 

  31. G. F. Voronin, Inorg. Mater. 36, 271 (2000).

    Article  CAS  Google Scholar 

  32. I. A. Uspenskaya, V. I. Goryacheva, and I. B. Kutsenok, Russ. J. Phys. Chem. 75, S135 (2001).

    Google Scholar 

  33. I. A. Uspenskaya, V. I. Goryacheva, R. V. Shersten, et al., Russ. J. Phys. Chem. 76, 1581 (2002).

    Google Scholar 

  34. Thermal Constants of Substances, The Handbook, Ed. V. P. Glushko (VINITI AN USSR, Moscow, 1978), No. 8, Part 1 [in Russian].

  35. V. P. Glushko, Thermal Constants of Substances, Database. http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html.

  36. O. Kubaschewski and C. B. Alcook, Metallurgical Thermochemistry, 5th ed. (Pergamon, Oxford, 1979).

    Google Scholar 

  37. I. Barin and G. Platzki, Thermochemical Data of Pure Substances, 3rd ed. (VCH, Weinheim, 1995).

    Book  Google Scholar 

  38. A. G. Morachevskiy and Ye. G. Firsova, Physical Chemistry. Thermodynamics of Chemical Reactions, The Manual (Lan, St. Petersburg, 2015) [in Russian].

  39. S. Murugavel, Phys. B (Amsterdam, Neth.) 72, 134204 (2005). https://doi.org/10.1103/PhysRevB.72.134204

  40. A. N. Cormack, J. Du, and T. R. Zeitler, Phys. Chem. Chem. Phys. 4, 3193 (2002). https://doi.org/10.1039/b201721k

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Science Development Fund under the President of the Republic of Azerbaijan (grant nos. EİF-BGM-3-BRFTF-2+/2017-15/05/1-M-13 and EİF-BGM-4-RFTF-1/2017-21/05/1-M-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Asadov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, M.M., Mustafaeva, S.N. & Ahmedova, N.A. Phase Equilibria in the Quasibinary Li2O⋅2B2O3–Yb2O3⋅B2O3 System, Assessment of Stability, and Conductivity of Solid Solutions Based on Li2O⋅2B2O3. Russ. J. Phys. Chem. 96, 508–514 (2022). https://doi.org/10.1134/S0036024422030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422030050

Keywords:

Navigation