Log in

Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery

用于锌-空气电池空气电极的无贵金属掺杂碳基电催 化剂

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Low-cost, high-energy density, and safe zinc-air batteries (ZABs) have been considered to be one of the most potential green energy storage devices. However, the performance of ZABs is affected by the properties of various components, including the passivation and corrosion of the Zn anode, the alkali nature of electrolyte, and especially the slow O2 oxidation-reduction reaction on the air cathode. Among various components, the cathode electrocatalyst is highly important to the performance of ZABs. N-doped carbon-based materials as electrocatalysts have the advantages of low price, good stability, controllable structure, and high conductivity, which can effectively improve the overall performance of ZABs. Up to now, a number of papers have been published in this field, but there is no systematic review of the latest progress of N-doped carbon-based materials for ZABs. This review paper provides a timely and comprehensive summary of this rapidly develo** and important field. In this paper, the important components and working principle of ZABs are firstly introduced and the progress of the anode and electrolyte of ZABs is briefly introduced. Then, the current advanced optimization strategies of N-doped carbon-based catalysts for ZABs are provided, including a variety of common methods for the preparation of N-doped carbon catalysts. In addition to metal-free N-doped carbon-based catalysts, the research progress of N-doped carbon-based catalysts coupled with nonnoble metals is also discussed. In this paper, the properties, preparation methods, and detailed mechanism of various catalysts are summarized systematically and their advantages and disadvantages are discussed. This paper not only introduces the latest research progress, but also provides the basic idea to guide the design of N-doped carbon-based electrocatalysts with high performance, which is helpful for their large-scale applications in ZABs.

摘要

低成本、高能量密度、安全的锌空气电池(ZABs)被认为是最有 潜力的绿色储能设备之一. 然而, ZABs的性能受到多种组分性能的影 响, 包括锌阳极的钝化和腐蚀, 电解质的碱性, 特别是空气阴极上缓慢 的O2氧化还原反应. 其中, 阴极电催化剂对ZABs的性能起着至关重要 的作用. 氮掺杂碳基材料作为电催化剂具有价格低、稳定性好、结构 可控、导电性高等优点, 可有效提高ZABs的整体性能. 到目前为止, 该 领域已经发表了大量论文, 但关于ZABs用氮掺杂碳基材料的最新进展 还没有系统的综述. 本文对这一迅速发展的重要领域进行了及时、全 面的总结. 本文首先介绍了ZABs的重要组成部分和工作原理, 并简要 介绍了ZABs的阳极和电解液的研究进展. 然后, 提出了目前先进的氮 掺杂碳基ZABs催化剂的优化策略, 包括各种常用的氮掺杂碳催化剂的 制备方法. 除了不含金属的氮掺杂碳基催化剂外, 还讨论了氮掺杂碳基 催化剂与非贵金属偶联的研究进展. 本文系统地综述了各种催化剂的 性质、制备方法和详细催化机理, 并对其优缺点进行了比较. 本文不仅 介绍了最新的研究进展, 还为指导高性能氮掺杂碳基电催化剂的设计 提供了基本思路, 有助于其在ZABs中的大规模应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin R, Xu J, Wei M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603: 73–78

    Article  CAS  Google Scholar 

  2. Wang H, Yu Z, Kong X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6: 588–616

    Article  CAS  Google Scholar 

  3. Chen Q, ** J, Song M, et al. High-energy aqueous ammonium-ion hybrid supercapacitors. Adv Mater, 2022, 34: 2107992

    Article  CAS  Google Scholar 

  4. Zhou C, Chen X, Liu S, et al. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries. J Am Chem Soc, 2022, 144: 2694–2704

    Article  CAS  Google Scholar 

  5. Jiang Z, Huang Y, Zhu Z, et al. Quenching singlet oxygen via inter-system crossing for a stable Li-O2 battery. Proc Natl Acad Sci USA, 2022, 119: e2202835119

    Article  CAS  Google Scholar 

  6. Shahbazi Farahani F, Rahmanifar MS, Noori A, et al. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J Am Chem Soc, 2022, 144: 3411–3428

    Article  CAS  Google Scholar 

  7. Zhu D, Zhao Q, Fan G, et al. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew Chem Int Ed, 2019, 58: 12460–12464

    Article  CAS  Google Scholar 

  8. Heise GW, Schumacher EA. An air-depolarized primary cell with caustic alkali electrolyte. Trans Electrochem Soc, 1932, 62: 383–391

    Article  Google Scholar 

  9. Cheng F, Chen J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev, 2012, 41: 2172–2192

    Article  CAS  Google Scholar 

  10. Xu M, Chen J, Zhang Y, et al. Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries. J Energy Chem, 2022, 73: 575–587

    Article  CAS  Google Scholar 

  11. Peng Y, Lai C, Zhang M, et al. Zn-Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery. J Power Sources, 2022, 526: 231173

    Article  CAS  Google Scholar 

  12. Cui Y, Zhu Y, Du J, et al. A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule, 2022, 6: 1617–1631

    Article  CAS  Google Scholar 

  13. Ma YY, Wu CX, Feng XJ, et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci, 2017, 10: 788–798

    Article  CAS  Google Scholar 

  14. Jang I, Hwang I, Tak Y. Attenuated degradation of a PEMFC cathode during fuel starvation by using carbon-supported IrO2. Electrochim Acta, 2013, 90: 148–156

    Article  CAS  Google Scholar 

  15. Chen S, Bi J, Zhao Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv Mater, 2012, 24: 5593–5597

    Article  CAS  Google Scholar 

  16. Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351: 361–365

    Article  CAS  Google Scholar 

  17. Cheon JY, Kim JH, Kim JH, et al. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J Am Chem Soc, 2014, 136: 8875–8878

    Article  CAS  Google Scholar 

  18. Huang C, Yu L, Zhang W, et al. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl Catal B-Environ, 2020, 276: 119137

    Article  CAS  Google Scholar 

  19. Chen Z, Wu R, Liu Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electro-catalysts for the hydrogen evolution reaction. Adv Mater, 2018, 30: 1802011

    Article  Google Scholar 

  20. Shi C, Liu Y, Qi R, et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87: 106153

    Article  CAS  Google Scholar 

  21. Zhang B, Zheng Y, Ma T, et al. Designing MOF nanoarchitectures for electrochemical water splitting. Adv Mater, 2021, 33: 2006042

    Article  CAS  Google Scholar 

  22. Liu H, Yu F, Wu K, et al. Recent progress on Fe-based single/dualatom catalysts for Zn-air batteries. Small, 2022, 18: 2106635

    Article  CAS  Google Scholar 

  23. Dong F, Wu M, Chen Z, et al. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett, 2022, 14: 36

    Article  CAS  Google Scholar 

  24. Pan J, Xu YY, Yang H, et al. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv Sci, 2018, 5: 1700691

    Article  Google Scholar 

  25. Nagy T, Nagy L, Erdélyi Z, et al.In situ” formation of Zn anode from bimetallic Cu-Zn alloy (brass) for dendrite-free operation of Zn-air rechargeable battery. Batteries, 2022, 8: 212

    Article  Google Scholar 

  26. Li L, Tsang YCA, **ao D, et al. Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries. Nat Commun, 2022, 13: 2870

    Article  CAS  Google Scholar 

  27. Jo YN, Prasanna K, Kang SH, et al. The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries. J Industrial Eng Chem, 2017, 53: 247–252

    Article  CAS  Google Scholar 

  28. Leong KW, Wang Y, Ni M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew Sustain Energy Rev, 2022, 154: 111771

    Article  CAS  Google Scholar 

  29. Kim YJ, Ryu KS. The surface-modified effects of Zn anode with CuO in Zn-air batteries. Appl Surf Sci, 2019, 480: 912–922

    Article  CAS  Google Scholar 

  30. Zhang Y, Wu Y, Ding H, et al. Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy, 2018, 53: 666–674

    Article  CAS  Google Scholar 

  31. Nam Jo Y, Santhoshkumar P, Prasanna K, et al. Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials. J Industrial Eng Chem, 2019, 76: 396–402

    Article  CAS  Google Scholar 

  32. **e X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci, 2020, 13: 503–510

    Article  CAS  Google Scholar 

  33. ** Y, Han KS, Shao Y, et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater, 2020, 30: 2003932

    Article  CAS  Google Scholar 

  34. Yan M, Dong N, Zhao X, et al. Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett, 2021, 6: 3236–3243

    Article  CAS  Google Scholar 

  35. Yan M, Xu C, Sun Y, et al. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy, 2021, 82: 105739

    Article  CAS  Google Scholar 

  36. Liu X, Fan X, Liu B, et al. Map** the design of electrolyte materials for electrically rechargeable zinc-air batteries. Adv Mater, 2021, 33: 2006461

    Article  CAS  Google Scholar 

  37. Sun W, Küpers V, Wang F, et al. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air. Angew Chem Int Ed, 2022, 61: e202207353

    Article  CAS  Google Scholar 

  38. Xu M, Ivey DG, **e Z, et al. The state of water in 1-butly-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide and its effect on Zn/Zn(II) redox behavior. Electrochim Acta, 2013, 97: 289–295

    Article  CAS  Google Scholar 

  39. Xu M, Dou H, Zhang Z, et al. Hierarchically nanostructured solidstate electrolyte for flexible rechargeable zinc-air batteries. Angew Chem Int Ed, 2022, 61: e202117703

    CAS  Google Scholar 

  40. Wang Q, Feng Q, Lei Y, et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat Commun, 2022, 13: 3689

    Article  CAS  Google Scholar 

  41. Lu XF, **a BY, Zang SQ, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed, 2020, 59: 4634–4650

    Article  CAS  Google Scholar 

  42. Zhu K, Zhu X, Yang W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chem Int Ed, 2019, 58: 1252–1265

    Article  CAS  Google Scholar 

  43. Gong K, Du F, **a Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  44. Gou Z, Qu H, Liu H, et al. Coupling of N-doped mesoporous carbon and N–Ti3C2 in 2D sandwiched heterostructure for enhanced oxygen electroreduction. Small, 2022, 18: 2106581

    Article  CAS  Google Scholar 

  45. Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. On the deactivation of N-doped carbon materials active sites during oxygen reduction reaction. Carbon, 2022, 189: 548–560

    Article  Google Scholar 

  46. Yu Q, Lv J, Li J, et al. ZIF-mediated anchoring of Co species on N-doped carbon nanorods as an efficient cathode catalyst for Zn-air batteries. Energy Environ Mater, 2022, 6: e12389

    Article  Google Scholar 

  47. Zhao J, Li Q, Zhang Q, et al. Carbon tube-graphene heterostructure with different N-do** configurations induces an electrochemically active-active interface for efficient oxygen electrocatalysis. Chem Eng J, 2022, 431: 133730

    Article  CAS  Google Scholar 

  48. Yang HB, Miao J, Hung SF, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv, 2016, 2: e1501122

    Article  Google Scholar 

  49. Zheng Y, Jiao Y, Chen J, et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc, 2011, 133: 20116–20119

    Article  CAS  Google Scholar 

  50. Wu B, Meng H, Morales DM, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: Synthesis, characterization, and activity of nitrogen sites. Adv Funct Mater, 2022, 32: 2204137

    Article  CAS  Google Scholar 

  51. Singh SK, Takeyasu K, Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater, 2019, 31: 1804297

    Article  Google Scholar 

  52. Han S, Peng S, Gao Z, et al. Green bridge between waste and energy: Conversion the rotten wood into cathode for functional Zn-air battery. Electrochim Acta, 2022, 424: 140667

    Article  CAS  Google Scholar 

  53. Sun H, Zhou P, Ye X, et al. Nitrogen-do** hollow carbon nanospheres derived from conjugated microporous polymers toward oxygen reduction reaction. J Colloid Interface Sci, 2022, 617: 11–19

    Article  CAS  Google Scholar 

  54. Ye G, Liu S, Huang K, et al. Domain-confined etching strategy to regulate defective sites in carbon for high-efficiency electrocatalytic oxygen reduction. Adv Funct Mater, 2022, 32: 2111396

    Article  CAS  Google Scholar 

  55. Zheng Y, Chen S, Yu X, et al. Nitrogen-doped carbon spheres with precisely-constructed pyridinic-N active sites for efficient oxygen reduction. Appl Surf Sci, 2022, 598: 153786

    Article  CAS  Google Scholar 

  56. Liu Y, Zou K, Zhang T, et al. Novel honeycomb-like carbons with tunable nanopores as metal-free N, O-codoped catalysts for robust oxygen reduction. Chem Eng J, 2022, 433: 133560

    Article  CAS  Google Scholar 

  57. Qiang F, Feng J, Wang H, et al. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc-air batteries. ACS Catal, 2022, 12: 4002–4015

    Article  CAS  Google Scholar 

  58. Wu Z, Yu Y, Zhang G, et al. In situ monitored (N, O)-do** of flexible vertical graphene films with high-flux plasma enhanced chemical vapor deposition for remarkable metal-free redox catalysis essential to alkaline zinc-air batteries. Adv Sci, 2022, 9: 2200614

    Article  CAS  Google Scholar 

  59. Zhang X, Wen X, Pan C, et al. N species tuning strategy in N, S co-doped graphene nanosheets for electrocatalytic activity and selectivity of oxygen redox reactions. Chem Eng J, 2022, 431: 133216

    Article  CAS  Google Scholar 

  60. Li Z, Ji S, Xu C, et al. Engineering the electronic structure of singleatom iron sites with boosted oxygen bifunctional activity for zinc-air batteries. Adv Mater, 2023, 35: 2209644

    Article  CAS  Google Scholar 

  61. Yuan Z, Li J, Fang Z, et al. Coupled intramolecular/heterointerfacial electron transfer in polyelectrolyte-shielded iso-type black phosphorus hetero-structure boosts oxygen reduction kinetics. J Energy Chem, 2021, 63: 468–476

    Article  CAS  Google Scholar 

  62. Wei P, Li X, He Z, et al. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chem Eng J, 2021, 422: 130134

    Article  CAS  Google Scholar 

  63. Sun T, Wang J, Qiu C, et al. B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv Sci, 2018, 5: 1800036

    Article  Google Scholar 

  64. Wang Y, Xu N, He R, et al. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl Catal B-Environ, 2021, 285: 119811

    Article  CAS  Google Scholar 

  65. **ao X, Li X, Wang Z, et al. Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Appl Catal B-Environ, 2020, 265: 118603

    Article  CAS  Google Scholar 

  66. Sun YN, Yang J, Ding X, et al. Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc-air batteries. Appl Catal B-Environ, 2021, 297: 120448

    Article  CAS  Google Scholar 

  67. Wang Y, Gan R, Zhao S, et al. B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/solid-state Zn-air batteries. Appl Surf Sci, 2022, 598: 153891

    Article  CAS  Google Scholar 

  68. Kondo T, Casolo S, Suzuki T, et al. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys Rev B, 2012, 86: 035436

    Article  Google Scholar 

  69. Quilez-Bermejo J, Morallón E, Cazorla-Amorós D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon, 2020, 165: 434–454

    Article  CAS  Google Scholar 

  70. Maldonado S, Stevenson KJ. Influence of nitrogen do** on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B, 2005, 109: 4707–4716

    Article  CAS  Google Scholar 

  71. Lv Q, Si W, He J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat Commun, 2018, 9: 3376

    Article  Google Scholar 

  72. Li L, Tang C, Zheng Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv Energy Mater, 2020, 10: 2000789

    Article  CAS  Google Scholar 

  73. Hu C, Dai L. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv Mater, 2017, 29: 1604942

    Article  Google Scholar 

  74. Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed, 2016, 55: 13296–13300

    Article  CAS  Google Scholar 

  75. Yue X, Huang S, Cai J, et al. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. J Mater Chem A, 2017, 5: 7784–7790

    Article  CAS  Google Scholar 

  76. Zehtab Yazdi A, Fei H, Ye R, et al. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction. ACS Appl Mater Interfaces, 2015, 7: 7786–7794

    Article  CAS  Google Scholar 

  77. Li J, Zhang Y, Zhang X, et al. S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces, 2017, 9: 398–405

    Article  CAS  Google Scholar 

  78. Lei H, Cui M, Huang Y. S-do** promotes pyridine nitrogen conversion and lattice defects of carbon nitride to enhance the performance of Zn-air batteries. ACS Appl Mater Interfaces, 2022, 14: 34793–34801

    Article  CAS  Google Scholar 

  79. Preuss K, Tănase LC, Teodorescu CM, et al. Sustainable metal-free carbogels as oxygen reduction electrocatalysts. J Mater Chem A, 2017, 5: 16336–16343

    Article  CAS  Google Scholar 

  80. Jorge AB, Jervis R, Periasamy AP, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv Energy Mater, 2020, 10: 1902494

    Article  CAS  Google Scholar 

  81. Zhao S, Wang DW, Amal R, et al. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater, 2019, 31: 1801526

    Article  Google Scholar 

  82. Gong T, Qi R, Liu X, et al. N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett, 2019, 11: 9

    Article  CAS  Google Scholar 

  83. Shinde SS, Yu JY, Song JW, et al. Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn-air batteries. Nanoscale Horiz, 2017, 2: 333–341

    Article  CAS  Google Scholar 

  84. Zhang J, Zhao Z, **a Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotech, 2015, 10: 444–452

    Article  CAS  Google Scholar 

  85. Zhang J, Qu L, Shi G, et al. N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew Chem Int Ed, 2016, 55: 2230–2234

    Article  CAS  Google Scholar 

  86. Li Z, Zhao W, Yin C, et al. Synergistic effects between doped nitrogen and phosphorus in metal-free cathode for zinc-air battery from covalent organic frameworks coated CNT. ACS Appl Mater Interfaces, 2017, 9: 44519–44528

    Article  CAS  Google Scholar 

  87. Tao X, Zhang Q, Li Y, et al. N, P, S tri-doped hollow carbon nano-sphere as a high-efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl Surf Sci, 2019, 490: 47–55

    Article  CAS  Google Scholar 

  88. He Y, Gehrig D, Zhang F, et al. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Adv Funct Mater, 2016, 26: 8255–8265

    Article  CAS  Google Scholar 

  89. Feng X, Bai Y, Liu M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ Sci, 2021, 14: 2036–2089

    Article  CAS  Google Scholar 

  90. Weber P, Weber DJ, Dosche C, et al. Highly durable Pt-based core-shell catalysts with metallic and oxidized Co species for boosting the oxygen reduction reaction. ACS Catal, 2022, 12: 6394–6408

    Article  CAS  Google Scholar 

  91. Liang Z, Kong N, Yang C, et al. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew Chem Int Ed, 2021, 60: 12759–12764

    Article  CAS  Google Scholar 

  92. Noh WY, Mun J, Lee Y, et al. Molecularly engineered carbon platform to anchor edge-hosted single-atomic M–N/C (M = Fe, Co, Ni, Cu) electrocatalysts of outstanding durability. ACS Catal, 2022, 12: 7994–8006

    Article  CAS  Google Scholar 

  93. Wu M, Zhang G, Hu Y, et al. Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy, 2021, 3: 176–187

    Article  CAS  Google Scholar 

  94. Tian Y, Xu L, Li M, et al. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett, 2021, 13: 3

    Article  Google Scholar 

  95. Xu L, Wu C, Liu P, et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chem Eng J, 2020, 387: 124065

    Article  CAS  Google Scholar 

  96. Ye L, Ying Y, Sun D, et al. Highly efficient porous carbon electro-catalyst with controllable N-species content for selective CO2 reduction. Angew Chem Int Ed, 2020, 59: 3244–3251

    Article  CAS  Google Scholar 

  97. Li Y, Liu X, Zheng L, et al. Preparation of Fe–N–C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J Mater Chem A, 2019, 7: 26147–26153

    Article  CAS  Google Scholar 

  98. Chen P, Zhou T, **ng L, et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed, 2017, 56: 610–614

    Article  CAS  Google Scholar 

  99. Wang Q, Lei Y, Chen Z, et al. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J Mater Chem A, 2018, 6: 516–526

    Article  CAS  Google Scholar 

  100. Yang Z, Wang Y, Zhu M, et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal, 2019, 9: 2158–2163

    Article  CAS  Google Scholar 

  101. Peng P, Shi L, Huo F, et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci Adv, 2019, 5: eaaw2322

    Article  CAS  Google Scholar 

  102. **e X, Peng L, Yang H, et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv Mater, 2021, 33: 2101038

    Article  CAS  Google Scholar 

  103. Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew Chem Int Ed, 2018, 57: 8614–8618

    Article  CAS  Google Scholar 

  104. Zhang J, Zhang M, Zeng Y, et al. Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small, 2019, 15: 1900307

    Article  Google Scholar 

  105. Chen G, Liu P, Liao Z, et al. Zinc-mediated template synthesis of Fe–N–C electrocatalysts with densely accessible Fe–Nx active sites for efficient oxygen reduction. Adv Mater, 2020, 32: 1907399

    Article  CAS  Google Scholar 

  106. Cheng W, Yuan P, Lv Z, et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl Catal B-Environ, 2020, 260: 118198

    Article  CAS  Google Scholar 

  107. Zou L, Hou C, Wang Q, et al. A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew Chem Int Ed, 2020, 59: 19627–19632

    Article  CAS  Google Scholar 

  108. Shen H, Jia Y, Qi Y, et al. Steering structural mesoporosity and working microenvironment of Fe–N–C catalysts for boosting cathodic mass transport of zinc-air batteries. Sci China Chem, 2022, 65: 1670–1678

    Article  CAS  Google Scholar 

  109. Meng Y, Li JC, Zhao SY, et al. Fluorination-assisted preparation of self-supporting single-atom Fe–N–doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-air batteries. Appl Catal B-Environ, 2021, 294: 120239

    Article  CAS  Google Scholar 

  110. Zhang S, Yang W, Liang Y, et al. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Appl Catal B-Environ, 2021, 285: 119780

    Article  CAS  Google Scholar 

  111. Huang Y, Liu K, Kan S, et al. Highly dispersed Fe–Nx active sites on graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon, 2021, 171: 1–9

    Article  CAS  Google Scholar 

  112. Zhang J, Chen J, Luo Y, et al. A defect-driven atomically dispersed Fe–N–C electrocatalyst for bifunctional oxygen electrocatalytic activity in Zn-air batteries. J Mater Chem A, 2021, 9: 5556–5565

    Article  CAS  Google Scholar 

  113. Chai L, Hu Z, Wang X, et al. Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon, 2021, 174: 531–539

    Article  CAS  Google Scholar 

  114. Wang Y, Gan R, Liu H, et al. Fe3O4/Fe2O3/Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn-air batteries. J Mater Chem A, 2021, 9: 2764–2774

    Article  CAS  Google Scholar 

  115. Shao C, Wu L, Zhang H, et al. A versatile approach to boost oxygen reduction of Fe–N4 sites by controllably incorporating sulfur functionality. Adv Funct Mater, 2021, 31: 2100833

    Article  CAS  Google Scholar 

  116. Wu Y, Tang X, Zhang F, et al. Manipulating the electronic configuration of Fe–N4 sites by an electron-withdrawing/donating strategy with improved oxygen electroreduction performance. Mater Chem Front, 2022, 6: 1209–1217

    Article  CAS  Google Scholar 

  117. Wang M, Huang B, Jiang N, et al. An Fe–N–C electrocatalyst with dense active sites synthesized by expeditious pyrolysis of a natural Fe–N4 macrocyclic complex. J Mater Chem A, 2022, 10: 23001–23007

    Article  CAS  Google Scholar 

  118. Jiao Y, Gu X, Zhai P, et al. Three-dimensional Fe single-atom catalyst for high-performance cathode of Zn-air batteries. Nano Lett, 2022, 22: 7386–7393

    Article  CAS  Google Scholar 

  119. Ma F, Liu Z, Zhang G, et al. Isolating Fe atoms in N-doped carbon hollow nanorods through a ZIF-phase-transition strategy for efficient oxygen reduction. Small, 2022, 18: 2205033

    Article  CAS  Google Scholar 

  120. Yang X, Zheng X, Li H, et al. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv Funct Mater, 2022, 32: 2200397

    Article  CAS  Google Scholar 

  121. Cai S, Cheng Y, Meng Z, et al. The design of single iron atoms dispersed with nitrogen coordination environment electrocatalyst for zinc-air battery. J Power Sources, 2022, 529: 231174

    Article  CAS  Google Scholar 

  122. Cao L, Shi X, Li Y, et al. Isolation anchoring strategy for in situ synthesis of iron single-atom catalysts towards long-term rechargeable zinc-air battery. Carbon, 2022, 199: 387–394

    Article  CAS  Google Scholar 

  123. Li L, Li N, **a J, et al. Post-synthetic electrostatic adsorption-assisted fabrication of efficient single-atom Fe–N–C oxygen reduction catalysts for Zn-air batteries. Sci China Mater, 2023, 66: 992–1001

    Article  CAS  Google Scholar 

  124. Wei W, Lu F, Cui L, et al. S heteroatom do** in highly porous carbonaceous spheres for boosted oxygen reduction reaction of atomically dispersed Fe-N4 active sites. Carbon, 2022, 197: 112–119

    Article  CAS  Google Scholar 

  125. Zhou Y, Lu R, Tao X, et al. Boosting oxygen electrocatalytic activity of Fe–N–C catalysts by phosphorus incorporation. J Am Chem Soc, 2023, 145: 3647–3655

    Article  CAS  Google Scholar 

  126. Yang H, Liu Y, Liu X, et al. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience, 2022, 2: 227–234

    Article  Google Scholar 

  127. Zhou F, Yu P, Sun F, et al. The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn-air batteries. J Mater Chem A, 2021, 9: 6831–6840

    Article  CAS  Google Scholar 

  128. Yang M, Liu Y, Sun J, et al. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci China Mater, 2022, 65: 1176–1186

    Article  CAS  Google Scholar 

  129. Rao P, Wu D, Wang TJ, et al. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience, 2022, 2: 399–404

    Article  Google Scholar 

  130. Sugawara T, Kawashima N, Murakami TN. Kinetic study of nafion degradation by Fenton reaction. J Power Sources, 2011, 196: 2615–2620

    Article  CAS  Google Scholar 

  131. Liu S, Wang Z, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater, 2017, 29: 1700874

    Article  Google Scholar 

  132. Zhang M, Dai Q, Zheng H, et al. Novel MOF-derived Co@N–C bi-functional catalysts for highly efficient Zn-air batteries and water splitting. Adv Mater, 2018, 30: 1705431

    Article  Google Scholar 

  133. Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv Energy Mater, 2019, 9: 1900149

    Article  Google Scholar 

  134. Li P, Wang H, Tan X, et al. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl Catal B-Environ, 2022, 316: 121674

    Article  CAS  Google Scholar 

  135. Chen Y, Gao R, Ji S, et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew Chem Int Ed, 2021, 60: 3212–3221

    Article  CAS  Google Scholar 

  136. Wang M, Cao L, Du X, et al. Highly dispersed Co-, N-, S-doped topological defect-rich hollow carbon nanoboxes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. ACS Appl Mater Interfaces, 2022, 14: 25427–25438

    Article  CAS  Google Scholar 

  137. Zhang W, Xu C, Zheng H, et al. Oxygen-rich cobalt-nitrogen-carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv Funct Mater, 2022, 32: 2200763

    Article  CAS  Google Scholar 

  138. Cao L, Wang Y, Zhu Q, et al. Co/Co–N/Co–O rooted on rGO hybrid BCN nanotube arrays as efficient oxygen electrocatalyst for Zn-air batteries. ACS Appl Mater Interfaces, 2022, 14: 17249–17258

    Article  CAS  Google Scholar 

  139. Wang X, Zhou X, Li C, et al. Asymmetric Co–N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv Mater, 2022, 34: 2204021

    Article  CAS  Google Scholar 

  140. Yang H, Gao S, Rao D, et al. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy Storage Mater, 2022, 46: 553–562

    Article  Google Scholar 

  141. Li L, Liu X, Wang J, et al. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J Mater Chem A, 2022, 10: 18723–18729

    Article  CAS  Google Scholar 

  142. Liang S, Zou L, Zheng L, et al. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv Energy Mater, 2022, 12: 2103097

    Article  CAS  Google Scholar 

  143. Cheng Y, Song H, Yu J, et al. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction. Chin J Catal, 2022, 43: 2443–2452

    Article  CAS  Google Scholar 

  144. Wu X, Tan C, He C, et al. Strategy for boosting Co–Nx content for oxygen reduction reaction in aqueous metal-air batteries. J Power Sources, 2022, 520: 230891

    Article  CAS  Google Scholar 

  145. Yu N, Chen H, Kuang J, et al. Efficient oxygen electrocatalysts with highly-exposed Co–N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res, 2022, 15: 7209–7219

    Article  CAS  Google Scholar 

  146. Li Z, Leng L, Ji S, et al. Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. J Energy Chem, 2022, 73: 469–477

    Article  CAS  Google Scholar 

  147. Li W, Wang J, Chen J, et al. Core-shell carbon-based bifunctional electrocatalysts derived from COF@MOF hybrid for advanced rechargeable Zn-air batteries. Small, 2022, 18: 2202018

    Article  CAS  Google Scholar 

  148. Han Y, Duan H, Zhou C, et al. Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binderfree zinc-air batteries. Nano Lett, 2022, 22: 2497–2505

    Article  CAS  Google Scholar 

  149. Zhang X, Xu X, Yao S, et al. Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small, 2022, 18: 2105329

    Article  CAS  Google Scholar 

  150. Shu X, Chen Q, Yang M, et al. Tuning Co-catalytic sites in hierarchical porous N-doped carbon for high-performance rechargeable and flexible Zn-air battery. Adv Energy Mater, 2023, 13: 2202871

    Article  CAS  Google Scholar 

  151. Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J Am Chem Soc, 2020, 142: 2404–2412

    Article  CAS  Google Scholar 

  152. Zhang Z, Yang S, Dou M, et al. Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv, 2016, 6: 67049–67056

    Article  CAS  Google Scholar 

  153. Iwase K, Yoshioka T, Nakanishi S, et al. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction. Angew Chem Int Ed, 2015, 54: 11068–11072

    Article  CAS  Google Scholar 

  154. Zong L, Lu F, Zhang W, et al. Atomically-dispersed Mn–(N–C2)2(O–C2)2 sites on carbon for efficient oxygen reduction reaction. Energy Storage Mater, 2022, 49: 209–218

    Article  Google Scholar 

  155. Qiu HJ, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv Mater, 2019, 31: 1900843

    Article  Google Scholar 

  156. Cai Z, Du P, Liang W, et al. Single-atom-sized Ni–N4 sites anchored in three-dimensional hierarchical carbon nanostructures for the oxygen reduction reaction. J Mater Chem A, 2020, 8: 15012–15022

    Article  CAS  Google Scholar 

  157. Liu G, **a X, Zhao C, et al. Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries. J Colloid Interface Sci, 2021, 588: 627–636

    Article  CAS  Google Scholar 

  158. Zhou Y, **e M, Song Y, et al. Edge-enriched Ni–N4 atomic sites embedded enoki-mushroom-like carbon nanotubes assembling hollow fibers for CO2 conversion and flexible Zn-air battery. Energy Storage Mater, 2022, 47: 235–248

    Article  Google Scholar 

  159. Wang M, Su K, Zhang M, et al. Advanced trifunctional electrocatalysis with Cu-, N-, S-doped defect-rich porous carbon for rechargeable Zn-air batteries and self-driven water splitting. ACS Sustain Chem Eng, 2021, 9: 13324–13336

    Article  CAS  Google Scholar 

  160. Zong L, Fan K, Wu W, et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv Funct Mater, 2021, 31: 2104864

    Article  CAS  Google Scholar 

  161. Wu W, Liu Y, Liu D, et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res, 2021, 14: 998–1003

    Article  CAS  Google Scholar 

  162. Huang Y, Kong F, Tian H, et al. Ultrauniformly dispersed Cu nano-particles embedded in N-doped carbon as a robust oxygen electrocatalyst. ACS Sustain Chem Eng, 2022, 10: 6370–6381

    Article  CAS  Google Scholar 

  163. Lu F, Fan K, Cui L, et al. Cu–N4 single atoms derived from metal-organic frameworks with trapped nitrogen-rich molecules and their use as efficient electrocatalysts for oxygen reduction reaction. Chem Eng J, 2022, 431: 133242

    Article  CAS  Google Scholar 

  164. Niu WJ, Sun QQ, He JZ, et al. Zeolitic imidazolate framework-derived copper single atom anchored on nitrogen-doped porous carbon as a highly efficient electrocatalyst for the oxygen reduction reaction toward Zn-air battery. Chem Mater, 2022, 34: 4104–4114

    Article  CAS  Google Scholar 

  165. Yan L, **e L, Wu XL, et al. Precise regulation of pyrrole-type singleatom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy, 2021, 3: 856–865

    Article  CAS  Google Scholar 

  166. Li GL, Lu ZF, Wang X, et al. Rational construction of atomically dispersed Mn–Nx embedded in mesoporous N-doped amorphous carbon for efficient oxygen reduction reaction in Zn-air batteries. ACS Sustain Chem Eng, 2022, 10: 224–233

    Article  CAS  Google Scholar 

  167. Zhang J, Lian J, Jiang Q, et al. Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chem Eng J, 2022, 439: 135634

    Article  CAS  Google Scholar 

  168. Cui L, Zhao J, Liu G, et al. Rich edge-hosted single-atomic Cu–N4 sites for highly efficient oxygen reduction reaction performance. J Colloid Interface Sci, 2022, 622: 209–217

    Article  CAS  Google Scholar 

  169. Zheng X, Cao X, Sun Z, et al. Indiscrete metal/metal-N–C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl Catal B-Environ, 2020, 272: 118967

    Article  CAS  Google Scholar 

  170. Jiang H, **a J, Jiao L, et al. Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for urea-assisted rechargeable Zn-air batteries. Appl Catal B-Environ, 2022, 310: 121352

    Article  CAS  Google Scholar 

  171. Wu H, Li H, Zhao X, et al. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ Sci, 2016, 9: 3736–3745

    Article  CAS  Google Scholar 

  172. Lai Q, Zhu J, Zhao Y, et al. MOF-based metal-do**-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn-air batteries. Small, 2017, 13: 1700740

    Article  Google Scholar 

  173. Zhang Y, Lu L, Zhang S, et al. Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. J Mater Chem A, 2018, 6: 5740–5745

    Article  CAS  Google Scholar 

  174. Bai L, Duan Z, Wen X, et al. Atomically dispersed manganese-based catalysts for efficient catalysis ofoxygen reduction reaction. Appl Catal B-Environ, 2019, 257: 117930

    Article  CAS  Google Scholar 

  175. Wang Y, Zhang X, ** S, et al. Rational design and synthesis of hierarchical porous Mn–N–C nanoparticles with atomically dispersed MnNx moieties for highly efficient oxygen reduction reaction. ACS Sustain Chem Eng, 2020, 8: 9367–9376

    Article  CAS  Google Scholar 

  176. Jiang P, Chen J, Wang C, et al. Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv Mater, 2018, 30: 1705324

    Article  Google Scholar 

  177. Su J, Yang Y, **a G, et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun, 2017, 8: 14969

    Article  Google Scholar 

  178. Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed, 2015, 54: 52–65

    Article  CAS  Google Scholar 

  179. Cheng X, Wang Y, Lu Y, et al. Single-atom alloy with Pt–Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Appl Catal B-Environ, 2022, 306: 121112

    Article  CAS  Google Scholar 

  180. Han A, Wang X, Tang K, et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew Chem Intl Edit, 2021, 60: 19262–19271

    Article  CAS  Google Scholar 

  181. Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci, 2018, 11: 3375–3379

    Article  CAS  Google Scholar 

  182. Xu Q, Jiang H, Li Y, et al. In-situ enriching active sites on Co-doped Fe–Co4N@N–C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl Catal B-Environ, 2019, 256: 117893

    Article  CAS  Google Scholar 

  183. Chen C, Li Y, Cheng D, et al. Graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges as bifunctional oxygen electrocatalyst for ultralong lasting zinc-air battery. ACS Appl Mater Interfaces, 2020, 12: 40415–40425

    Article  CAS  Google Scholar 

  184. Jose V, Hu H, Edison E, et al. Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods, 2021, 5: 2000751

    Article  CAS  Google Scholar 

  185. Chen C, Cheng D, Liu S, et al. Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Storage Mater, 2020, 24: 402–411

    Article  Google Scholar 

  186. Chen L, Zhang Y, Dong L, et al. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J Mater Chem A, 2020, 8: 4369–4375

    Article  CAS  Google Scholar 

  187. Wang D, Xu H, Yang P, et al. Fe–N4 and Co–N4 dual sites for boosting oxygen electroreduction in Zn-air batteries. J Mater Chem A, 2021, 9: 13678–13687

    Article  CAS  Google Scholar 

  188. Wang K, Liu J, Tang Z, et al. Establishing structure/property relationships in atomically dispersed Co–Fe dual site M–Nx catalysts on microporous carbon for the oxygen reduction reaction. J Mater Chem A, 2021, 9: 13044–13055

    Article  CAS  Google Scholar 

  189. He Y, Yang X, Li Y, et al. Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal, 2022, 12: 1216–1227

    Article  CAS  Google Scholar 

  190. Zhang X, Yu P, **ng G, et al. Iron single atoms-assisted cobalt nitride nanoparticles to strengthen the cycle life of rechargeable Zn-air battery. Small, 2022, 18: 2205228

    Article  CAS  Google Scholar 

  191. Wu Y, Ye C, Yu L, et al. Soft template-directed interlayer confinement synthesis of a Fe–Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater, 2022, 45: 805–813

    Article  Google Scholar 

  192. Chen J, Li H, Fan C, et al. Dual single-atomic Ni–N4 and Fe–N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv Mater, 2020, 32: 2003134

    Article  CAS  Google Scholar 

  193. Zhu X, Zhang D, Chen CJ, et al. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 2020, 71: 104597

    Article  CAS  Google Scholar 

  194. Wang B, Tang J, Zhang X, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: Template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem Eng J, 2022, 437: 135295

    Article  CAS  Google Scholar 

  195. Zhang X, Li Y, Jiang M, et al. Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chem Eng J, 2021, 426: 130758

    Article  CAS  Google Scholar 

  196. Yu D, Ma Y, Hu F, et al. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv Energy Mater, 2021, 11: 2101242

    Article  CAS  Google Scholar 

  197. Ma Y, Fan H, Wu C, et al. An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon, 2021, 185: 526–535

    Article  CAS  Google Scholar 

  198. Hu B, Huang A, Zhang X, et al. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res, 2021, 14: 3482–3488

    Article  CAS  Google Scholar 

  199. Xu J, Lai S, Qi D, et al. Atomic Fe–Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res, 2021, 14: 1374–1381

    Article  CAS  Google Scholar 

  200. Yang G, Zhu J, Yuan P, et al. Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat Commun, 2021, 12: 1734

    Article  CAS  Google Scholar 

  201. Cui T, Wang Y, Ye T, et al. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew Chem Int Ed, 2022, 61: e202115219

    Article  CAS  Google Scholar 

  202. Song K, Feng Y, Zhou X, et al. Exploiting the trade-offs of electron transfer in MOF-derived single Zn/Co atomic couples for performance-enhanced zinc-air battery. Appl Catal B-Environ, 2022, 316: 121591

    Article  CAS  Google Scholar 

  203. Yasin G, Ali S, Ibraheem S, et al. Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal, 2023, 13: 2313–2325

    Article  CAS  Google Scholar 

  204. Ryu J, Park J, Park J, et al. Molecular engineering of atomically dispersed Fe–N4 and Cu–N4 dual-sites in carbon nitride nanotubes for rechargeable zinc-air batteries. Energy Storage Mater, 2023, 55: 397–405

    Article  Google Scholar 

  205. Li S, Chen W, Pan H, et al. FeCo alloy nanoparticles coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-air batteries. ACS Sustain Chem Eng, 2019, 7: 8530–8541

    Article  CAS  Google Scholar 

  206. Liu J, He T, Wang Q, et al. Confining ultrasmall bimetallic alloys in porous N-carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn-air batteries. J Mater Chem A, 2019, 7: 12451–12456

    Article  CAS  Google Scholar 

  207. Kundu A, Samanta A, Raj CR. Hierarchical hollow MOF-derived bamboo-like N-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy: An efficient bifunctional oxygen electrocatalyst for zinc-air battery. ACS Appl Mater Interfaces, 2021, 13: 30486–30496

    Article  CAS  Google Scholar 

  208. Wan W, Liu X, Li H, et al. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl Catal B-Environ, 2019, 240: 193–200

    Article  CAS  Google Scholar 

  209. Hao X, Jiang Z, Zhang B, et al. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bi-functional air electrode for rechargeable liquid and flexible all-solidstate zinc-air batteries. Adv Sci, 2021, 8: 2004572

    Article  CAS  Google Scholar 

  210. Chang S, Zhang H, Zhang Z. FeCo alloy/N, S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery. J Energy Chem, 2021, 56: 64–71

    Article  CAS  Google Scholar 

  211. Niu Y, Teng X, Gong S, et al. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett, 2021, 13: 126

    Article  CAS  Google Scholar 

  212. Kim K, Min K, Go Y, et al. FeCo alloy nanoparticles embedded in N-doped carbon supported on highly defective ketjenblack as effective bifunctional electrocatalysts for rechargeable Zn-air batteries. Appl Catal B-Environ, 2022, 315: 121501

    Article  CAS  Google Scholar 

  213. Xu X, **e J, Liu B, et al. PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bi-functional catalyst for rechargeable Zn-air batteries. Appl Catal B-Environ, 2022, 316: 121687

    Article  CAS  Google Scholar 

  214. Chen X, Chen D, Li G, et al. FeNi incorporated N doped carbon nanotubes from glucosamine hydrochloride as highly efficient bi-functional catalyst for long term rechargeable zinc-air batteries. Electrochim Acta, 2022, 428: 140938

    Article  CAS  Google Scholar 

  215. Wang Z, Ang J, Liu J, et al. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl Catal B-Environ, 2020, 263: 118344

    Article  CAS  Google Scholar 

  216. Lin SY, Zhang X, Sang SY, et al. Bio-derived FeNi alloy confined in N-doped carbon nanosheets as efficient air electrodes for Zn-air battery. J Colloid Interface Sci, 2022, 628: 499–507

    Article  CAS  Google Scholar 

  217. Liang X, **ao H, Zhang T, et al. A unique nanocomposite with FeCo nanoalloy anchored on S, N co-doped carbonaceous matrix for high bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalytic property in Zn-air battery. J Colloid Interface Sci, 2023, 630: 170–181

    Article  CAS  Google Scholar 

  218. Zheng X, Cao X, Zeng K, et al. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small, 2021, 17: 2006183

    Article  CAS  Google Scholar 

  219. Wang Z, Ang J, Zhang B, et al. FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery. Appl Catal B-Environ, 2019, 254: 26–36

    Article  CAS  Google Scholar 

  220. Liu X, Wang L, Yu P, et al. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew Chem Int Ed, 2018, 57: 16166–16170

    Article  CAS  Google Scholar 

  221. Li C, Wu M, Liu R. High-performance bifunctional oxygen electro-catalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofi-bers with embedding FeCo alloy nanoparticles. Appl Catal B-Environ, 2019, 244: 150–158

    Article  CAS  Google Scholar 

  222. Lin SY, **a LX, Zhang L, et al. Highly active Fe centered FeM–N-doped carbon (M = Co/Ni/Mn): A general strategy for efficient oxygen conversion in Zn-air battery. Chem Eng J, 2021, 424: 130559

    Article  CAS  Google Scholar 

  223. Tan Y, Zhang Z, Lei Z, et al. Electronic modulation optimizes OH* intermediate adsorption on Co–NxC sites via coupling CoNi alloy in hollow carbon nanopolyhedron toward efficient reversible oxygen electrocatalysis. Appl Catal B-Environ, 2022, 304: 121006

    Article  CAS  Google Scholar 

  224. Zhang YL, Dai YK, Liu B, et al. Vacuum vapor migration strategy for atom-nanoparticle composite catalysts boosting bifunctional oxygen catalysis and rechargeable Zn-air batteries. J Mater Chem A, 2022, 10: 3112–3121

    Article  CAS  Google Scholar 

  225. Liu H, Jiang L, Khan J, et al. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew Chem Int Ed, 2023, 62: e202214988

    CAS  Google Scholar 

  226. Wu G, More KL, Johnston CM, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332: 443–447

    Article  CAS  Google Scholar 

  227. Chen X, Pu J, Hu X, et al. Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Small, 2022, 18: 2200578

    Article  CAS  Google Scholar 

  228. Jiang R, Li L, Sheng T, et al. Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J Am Chem Soc, 2018, 140: 11594–11598

    Article  CAS  Google Scholar 

  229. Liu X, Park M, Kim MG, et al. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries. Angew Chem Int Ed, 2015, 54: 9654–9658

    Article  CAS  Google Scholar 

  230. Fu Y, Yu HY, Jiang C, et al. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv Funct Mater, 2018, 28: 1705094

    Article  Google Scholar 

  231. Lu XF, Gu LF, Wang JW, et al. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater, 2017, 29: 1604437

    Article  Google Scholar 

  232. Wang J, Kim J, Choi S, et al. A review of carbon-supported non-precious metals as energy-related electrocatalysts. Small Methods, 2020, 4: 2000621

    Article  CAS  Google Scholar 

  233. Liu Y, Chen Z, Li Z, et al. CoNi nanoalloy-Co–N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy, 2022, 99: 107325

    Article  CAS  Google Scholar 

  234. Li H, Kelly S, Guevarra D, et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat Catal, 2021, 4: 463–468

    Article  CAS  Google Scholar 

  235. Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486: 43–51

    Article  CAS  Google Scholar 

  236. Wang Z, Xu W, Chen X, et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv Funct Mater, 2019, 29: 1902875

    Article  Google Scholar 

  237. Wang X, Liao Z, Fu Y, et al. Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater, 2020, 26: 157–164

    Article  Google Scholar 

  238. Tian Y, Liu X, Xu L, et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv Funct Mater, 2021, 31: 2101239

    Article  CAS  Google Scholar 

  239. Wang Y, Gan R, Ai Z, et al. Hollow Co3O4–X nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries. Carbon, 2021, 181: 87–98

    Article  CAS  Google Scholar 

  240. Zhang X, Pan S, Song H, et al. Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn-air batteries. J Mater Chem A, 2021, 9: 19734–19740

    Article  CAS  Google Scholar 

  241. Zhao Y, Wang X, Guo X, et al. Nitrogen-doped 3D porous graphene coupled with densely distributed CoOx nanoparticles for efficient multifunctional electrocatalysis and Zn-air battery. Electrochim Acta, 2022, 420: 140432

    Article  CAS  Google Scholar 

  242. Yao X, Wang X, Sun L, et al. Popcorn-like Co3O4 nanoparticles confined in a three-dimensional hierarchical N-doped carbon nanotube network as a highly-efficient trifunctional electrocatalyst for zinc-air batteries and water splitting devices. Inorg Chem Front, 2022, 9: 2517–2529

    Article  CAS  Google Scholar 

  243. Li Y, Huang H, Chen S, et al. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res, 2019, 12: 2774–2780

    Article  CAS  Google Scholar 

  244. Zhang HM, Zhao Y, Zhang Y, et al. Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem Eng J, 2019, 375: 122058

    Article  CAS  Google Scholar 

  245. Li L, Li Y, **ao Y, et al. Fe3O4-encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn-air batteries. Chem Commun, 2019, 55: 7538–7541

    Article  CAS  Google Scholar 

  246. Yao Z, Li Y, Chen D, et al. γ-Fe2O3 clusters embedded in 1D porous N-doped carbon matrix as pH-universal electrocatalyst for enhanced oxygen reduction reaction. Chem Eng J, 2021, 415: 129033

    Article  CAS  Google Scholar 

  247. Zhou Q, Hou S, Cheng Y, et al. Interfacial engineering Co and MnO within N,S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries. Appl Catal B-Environ, 2021, 295: 120281

    Article  CAS  Google Scholar 

  248. Wang XR, Liu JY, Liu ZW, et al. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv Mater, 2018, 30: 1800005

    Article  Google Scholar 

  249. Ge H, Li G, Zheng T, et al. Hollow NiCo2O4 nanospheres supported on N-doped carbon nanowebs as efficient bifunctional catalyst for rechargeable and flexible Zn-air batteries. Electrochim Acta, 2019, 319: 1–9

    Article  CAS  Google Scholar 

  250. Li Y, Zhou Z, Cheng G, et al. Flower-like NiCo2O4–CN as efficient bifunctional electrocatalyst for Zn-air battery. Electrochim Acta, 2020, 341: 135997

    Article  CAS  Google Scholar 

  251. Chen C, Su H, Lu LN, et al. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem Eng J, 2021, 408: 127814

    Article  CAS  Google Scholar 

  252. Wang A, Hu Y, Wang H, et al. Activating inverse spinel NiCo2O4 embedded in N-doped carbon nanofibers via Fe substitution for bi-functional oxygen electrocatalysis. Mater Today Phys, 2021, 17: 100353

    Article  CAS  Google Scholar 

  253. Yan L, Xu Z, Hu W, et al. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy, 2021, 82: 105710

    Article  CAS  Google Scholar 

  254. Wang X, Ouyang T, Wang L, et al. Surface reorganization on electrochemically-induced Zn–Ni–Co spinel oxides for enhanced oxygen electrocatalysis. Angew Chem Int Ed, 2020, 59: 6492–6499

    Article  CAS  Google Scholar 

  255. Wei H, Tan A, Hu S, et al. Efficient spinel iron-cobalt oxide/nitrogen-doped ordered mesoporous carbon catalyst for rechargeable zinc-air batteries. Chin J Catal, 2021, 42: 1451–1458

    Article  CAS  Google Scholar 

  256. Wang Z, Huang J, Wang L, et al. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew Chem Int Ed, 2022, 61: e202114696

    CAS  Google Scholar 

  257. Go Y, Min K, An H, et al. Oxygen-vacancy-rich CoFe/CoFe2O4 embedded in N-doped hollow carbon spheres as a highly efficient bi-functional electrocatalyst for Zn-air batteries. Chem Eng J, 2022, 448: 137665

    Article  CAS  Google Scholar 

  258. Bu Y, Jang H, Gwon O, et al. Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J Mater Chem A, 2019, 7: 2048–2054

    Article  CAS  Google Scholar 

  259. Arafat Y, Azhar MR, Zhong Y, et al. A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc-air batteries. Nano-Micro Lett, 2020, 12: 130

    Article  CAS  Google Scholar 

  260. Lin H, **e J, Zhang Z, et al. Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries. J Colloid Interface Sci, 2021, 581: 374–384

    Article  CAS  Google Scholar 

  261. Liu H, Ren X, Bai H, et al. 2LaCo0.7Fe0.3O3/N-doped carbon bifunctional electrocatalyst derived from g-C3N4 nanosheets for zinc-air battery. Electrochim Acta, 2022, 414: 140211

    Article  CAS  Google Scholar 

  262. Zhang Z, Zhang H, Hou Y, et al. One-step synthesis of CeFeO3 nanoparticles on porous nanocarbon frameworks derived from ZIF-8 for a boosted oxygen reduction reaction in pH universal electrolytes. J Mater Chem A, 2022, 10: 13013–13020

    Article  CAS  Google Scholar 

  263. Li T, Yin J, Li Y, et al. Confinement of sulfur-doped NiO nanoparticles into N-doped carbon nanotube/nanofiber-coupled hierarchical branched superstructures: Electronic modulation by anion do** boosts oxygen evolution electrocatalysis. J Energy Chem, 2021, 63: 585–593

    Article  CAS  Google Scholar 

  264. Liu H, Liu Y, Mehdi S, et al. Surface phosphorus-induced CoO coupling to monolithic carbon for efficient air electrode of quasi-solid-state Zn-air batteries. Adv Sci, 2021, 8: 2101314

    Article  CAS  Google Scholar 

  265. Rao Y, Chen S, Yue Q, et al. Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium do** for long-lasting and flexible rechargeable Zn-air batteries. ACS Catal, 2021, 11: 8097–8103

    Article  CAS  Google Scholar 

  266. Lu XF, Chen Y, Wang S, et al. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv Mater, 2019, 31: 1902339

    Article  Google Scholar 

  267. Chen YN, Guo Y, Cui H, et al. Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J Mater Chem A, 2018, 6: 9716–9722

    Article  CAS  Google Scholar 

  268. Wu ZS, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc, 2012, 134: 9082–9085

    Article  CAS  Google Scholar 

  269. Gao S, Fan B, Feng R, et al. N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy, 2017, 40: 462–470

    Article  CAS  Google Scholar 

  270. Wu X, Niu Y, Feng B, et al. Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media. ACS Appl Mater Interfaces, 2018, 10: 20440–20447

    Article  CAS  Google Scholar 

  271. Cheng H, Li ML, Su CY, et al. Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bi-functional oxygen electrode for Zn-air batteries. Adv Funct Mater, 2017, 27: 1701833

    Article  Google Scholar 

  272. Suntivich J, Gasteiger HA, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem, 2011, 3: 546–550

    Article  CAS  Google Scholar 

  273. Rossmeisl J, Qu ZW, Zhu H, et al. Electrolysis of water on oxide surfaces. J Electroanal Chem, 2007, 607: 83–89

    Article  CAS  Google Scholar 

  274. Vijayakumar E, Ramakrishnan S, Sathiskumar C, et al. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem Eng J, 2022, 428: 131115

    Article  CAS  Google Scholar 

  275. Huang H, Liu A, Kang Q, et al. Synthesis of one-dimensional vanadium-doped CoS/Co9S8 heterojunctions as bifunctional electrocatalysts for zinc-air battery. Mater Today Energy, 2022, 25: 100968

    Article  CAS  Google Scholar 

  276. Li K, Cheng R, Xue Q, et al. In-situ construction of Co/CoSe Schottky heterojunction with interfacial electron redistribution to facilitate oxygen electrocatalysis bifunctionality for zinc-air batteries. Chem Eng J, 2022, 450: 137991

    Article  CAS  Google Scholar 

  277. Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. J Mater Chem A, 2017, 5: 21122–21129

    Article  CAS  Google Scholar 

  278. Wan K, Luo J, Zhang X, et al. A template-directed bifunctional NiSx/nitrogen-doped mesoporous carbon electrocatalyst for rechargeable Zn-air batteries. J Mater Chem A, 2019, 7: 19889–19897

    Article  CAS  Google Scholar 

  279. Li YW, Zhang WJ, Li J, et al. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Appl Mater Interfaces, 2020, 12: 44710–44719

    Article  CAS  Google Scholar 

  280. Zhang J, Wang T, Xue D, et al. Energy-level engineered hollow N-doped NiS1.03 for Zn-air batteries. Energy Storage Mater, 2020, 25: 202–209

    Article  Google Scholar 

  281. Pan H, Huang X, Lu Z, et al. Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bi-functional oxygen electrocatalysis and rechargeable Zn-air batteries. Chem Eng J, 2021, 419: 129619

    Article  CAS  Google Scholar 

  282. Yan L, Wang H, Shen J, et al. Formation of mesoporous Co/CoS/metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem Eng J, 2021, 403: 126385

    Article  CAS  Google Scholar 

  283. Xu H, Wang D, Yang P, et al. FeS encapsulated hierarchical porous S, N-dual-doped carbon for oxygen reduction reaction facilitation in Zn-air batteries. Sustain Energy Fuels, 2021, 5: 2695–2703

    Article  CAS  Google Scholar 

  284. Huang Y, Liu Y, Deng Y, et al. Enhancing the bifunctional activity of CoSe2 nanocubes by surface decoration of CeO2 for advanced zinc-air batteries. J Colloid Interface Sci, 2022, 625: 839–849

    Article  CAS  Google Scholar 

  285. Zheng X, Zhang J, Wang J, et al. Facile synthesis of nickel cobalt selenide hollow nanospheres as efficient bifunctional electrocatalyst for rechargeable Zn-air battery. Sci China Mater, 2020, 63: 347–355

    Article  CAS  Google Scholar 

  286. Hou C, Zou L, Wang Y, et al. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew Chem Int Ed, 2020, 59: 21360–21366

    Article  CAS  Google Scholar 

  287. Yao C, Li J, Zhang Z, et al. Hierarchical core-shell Co2N/CoP embedded in N, P-doped carbon nanotubes as efficient oxygen reduction reaction catalysts for Zn-air batteries. Small, 2022, 18: 2108094

    Article  CAS  Google Scholar 

  288. Wu K, Zhang L, Yuan Y, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv Mater, 2020, 32: 2002292

    Article  CAS  Google Scholar 

  289. Feng L, Ding R, Chen Y, et al. Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. J Power Sources, 2020, 452: 227837

    Article  CAS  Google Scholar 

  290. Zhang Y, Shi W, Bo L, et al. Electrospinning construction of hetero-structural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn-air batteries and water splitting. Chem Eng J, 2022, 431: 134188

    Article  CAS  Google Scholar 

  291. Chen H, Liu Y, Liu B, et al. Hypercrosslinked polymer-mediated fabrication of binary metal phosphide decorated spherical carbon as an efficient and durable bifunctional electrocatalyst for rechargeable Zn-air batteries. Nanoscale, 2022, 14: 12431–12436

    Article  CAS  Google Scholar 

  292. Wu S, Deng D, Zhang E, et al. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon, 2022, 196: 347–353

    Article  CAS  Google Scholar 

  293. **ao Y, Wen Z, Su D, et al. A rational self-sacrificing template strategy to construct 2D layered porosity Fe3N–N–C catalyst for high-performance zinc-air battery. J Alloys Compd, 2023, 938: 168517

    Article  CAS  Google Scholar 

  294. Cao M, Liu Y, Sun K, et al. Coupling Fe3C nanoparticles and N-do** on wood-derived carbon to construct reversible cathode for Zn-air batteries. Small, 2022, 18: 2202014

    Article  CAS  Google Scholar 

  295. Su D, **ao Y, Liu Y, et al. Surface-confined polymerization to construct binary Fe3N/Co–N–C encapsulated MXene composites for high-performance zinc-air battery. Carbon, 2023, 201: 269–277

    Article  CAS  Google Scholar 

  296. Li H, Li Q, Wen P, et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv Mater, 2018, 30: 1705796

    Article  Google Scholar 

  297. Shi Q, Liu Q, Zheng Y, et al. Controllable construction of bifunctional CoxP@N,P-doped carbon electrocatalysts for rechargeable zinc-air batteries. Energy Environ Mater, 2022, 5: 515–523

    Article  CAS  Google Scholar 

  298. Wu X, Han G, Wen H, et al. Co2N nanoparticles anchored on N-doped active carbon as catalyst for oxygen reduction reaction in zinc-air battery. Energy Environ Mater, 2022, 5: 935–943

    Article  CAS  Google Scholar 

  299. Guo X, Liu S, Wan X, et al. Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc-air batteries. Nano Lett, 2022, 22: 4879–4887

    Article  CAS  Google Scholar 

  300. Li G, Sheng K, Lei Y, et al. Facile synthesis of Fe3C-dominated Fe/Fe3C/FeN0.0324 multiphase nanocrystals embedded in nitrogen-modified graphitized carbon as efficient pH-universal catalyst for oxygen reduction reaction and zinc-air battery. Chem Eng J, 2023, 451: 138823

    Article  CAS  Google Scholar 

  301. Cai Z, Lin S, **ao J, et al. Efficient bifunctional catalytic electrodes with uniformly distributed NiN2 active sites and channels for long-lasting rechargeable zinc-air batteries. Small, 2020, 16: 2002518

    Article  CAS  Google Scholar 

  302. Yang Y, Zeng R, **ong Y, et al. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J Am Chem Soc, 2019, 141: 19241–19245

    Article  CAS  Google Scholar 

  303. Zeng R, Yang Y, Feng X, et al. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci Adv, 2022, 8: eahj1584

    Article  Google Scholar 

  304. Liu Z, Yu J, Li X, et al. Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. Carbon, 2018, 127: 636–642

    Article  CAS  Google Scholar 

  305. Zheng X, Han X, Liu H, et al. Controllable synthesis of NixSe (0.5 ⩽ x ⩽ 1) nanocrystals for efficient rechargeable zinc-air batteries and water splitting. ACS Appl Mater Interfaces, 2018, 10: 13675–13684

    Article  CAS  Google Scholar 

  306. Dai J, Zhao D, Sun W, et al. Cu(II) ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis. ACS Catal, 2019, 9: 10761–10772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Sichuan Province (2023NSFSC0086) and the Fundamental Research Funds for the Central Universities (YJ2021156).

Author information

Authors and Affiliations

Authors

Contributions

Xu HM wrote the paper; Xu HM and Huang CJ prepared the figures and tables; Shuai TS, Zhan QN, Zhang ZJ, Cai W and Chen J revised the manuscript; Li GR provided the overall concept and revised the manuscript. All authors participated in the discussion.

Corresponding author

Correspondence to Gao-Ren Li  (**高仁).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Hui-Min Xu is currently a PhD candidate under the supervision of Prof. Gao-Ren Li at Sichuan University. He received his Bachelor’s degree in engineering in 2014 from Chongqing University of Arts and Sciences and his master’s degree in engineering in 2018 from Fujian Agricultural and Forest University. His research centers on ORR and OER electrocatalysts and metal-air batteries, including the synthesis of microporous-mesoporous carbon-based and nickel foam-based electrocatalysts.

Gao-Ren Li received his PhD degree from Sun Yat-sen University (China) in 2005. From September 2005 to September 2021, he worked at the School of Chemistry, Sun Yat-sen Universtiy. Since October 2021, he has been working at the College of Materials Science and Engineering, Sichuan University. His current research interests mainly focus on electrocatalysis, especially water splitting and electrochemical conversion of CO2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HM., Huang, CJ., Shuai, TY. et al. Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery. Sci. China Mater. 66, 2953–3003 (2023). https://doi.org/10.1007/s40843-023-2464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2464-8

Keywords

Navigation