Log in

Design of an output feedback variable structure series vectorial compensator to enhance dynamic stability

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents an output feedback based Variable Structure Controller (VSC) is described for a series vectorial compensator (SVeC) in order to enhance the dynamic stability of electric power system. The input to the VSC is speed deviation and it is employed to design the switching surface of the proposed VSC. SVeC is a new series Flexible AC Transmission System (FACTS) device and this can regulate the line reactance by vary the duty ratio of PWM switches. The main aim is to check the effectiveness of the SVeC with VSC to enhance the stability in unique system. For this cause, proposed a novel SVeC current injection model incorporated in the test system. The mathematical model of VSC sliding controller gain proposed. The test system is derived using Heffron–Phillips model. The dynamic stability of the system with this proposed Variable Structure SVeC is analysed through eigenvalues and nonlinear time domain simulations for a unique system at nominal load. The performance of the proposed system is compared with SVeC with Feedback control, with PSS control and without control. From the results, it is concluded that the dynamic stability of the system is enhanced with proposed Variable Structure Feedback based SVeC controller compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Code availability

No datasets were generated or analyzed during this current study.

Abbreviations

\(A\) :

State matrix

\(B\) :

Control matrix

\(C\) :

Output matrix

\(D\) :

Dam** constant (pu)

\(D_{{\text{S}}}\) :

Duty cycle

\({\text{E}}\) :

Generator induced emf (p.u)

\(E_{\text{d}}^{^{\prime}}\) :

D-axis component of voltage behind transient reactance (p.u)

\(E_{\text{fd}}\) :

Field circuit voltage (p.u)

\(E_{\text{q}}^{^{\prime}}\) :

Q-axis component of voltage behind transient reactance (p.u)

\({{f}}\) :

Frequency in Hz

g :

Stator algebraic and network equations

\({{h}}\) :

Switching hyperplane

\({{H}}\) :

Machine inertia constant (s)

\(I_{\text{d}}\) and \(I_{\text{q}}\) :

Direct and quadrature axis current (p.u)

\({{I}}_{12}\) :

Current flowing in the line 1 and 2

\({{K}}_{{\text{A}}}\) :

Automatic voltage regulator gain

\({{K}}_{{\text{e}}}\) :

Equivalent control phase matrix

\({{K}}_{{\text{r}}}\) :

Reaching phase control matrix

\({{K}}_{{{\text{SMC}}}}\) :

Sliding mode control gain matrix

\({{M}}\) :

Transformation matrix

\(n\) :

Turns ratio

\({{P}}_{{\text{e}}}\) :

Electrical power

\({{P}}\) :

Positive definite symmetric matrix

\(Q\) :

Positive semi definite matrix

\(R\) :

Positive definite matrix

\({{R}}_{{\text{S}}}\) :

Stator resistance (p.u)

\(R_{{\text{e}}}\) :

External equivalent resistance (SMIB system) (p.u)

\(R_{12}\) :

Resistance of transmission line between node 1 and 2 (p.u)

\(S\) :

Sliding surface

\(T_{{\text{A}}}\) :

Regulator time constant (s)

\(T_{{{\text{do}}}}^{\prime }\) :

D-axis open circuit time constant (s)

\(T_{{\text{e}}}\) :

Exciter time constant (s)

\(T_{{\text{M}}}\) :

Mechanical torque (p.u)

\(U\) :

Control (or) input vector

\(V_{{\text{d}}}\) :

Direct axis voltage (p.u)

\(V_{{{\text{inf}}}}\) :

Infinite bus voltage (p.u)

\(V_{{\text{q}}}\) :

Quadrature axis voltage (p.u)

\(V_{{{\text{ref}}}}\) :

Reference input voltage of regulator

\(V_{{{\text{SVeC}}}}\) :

SVeC bus voltage (p.u)

\(V_{\text{T}}\) :

Machine terminal voltage (p.u)

\(X\) :

State vector

\(X_{{\text{C}}}\) :

Capacitive reactance (p.u)

\(X_{{\text{d}}}\) :

Direct axis component of synchronous reactance (p.u)

\( X_{{\text{d}}}^{\prime } \) :

Direct axis transient reactance (p.u)

\(X_{{\text{e}}}\) :

External equivalent reactance (SMIB system) (p.u)

\(X_{\text{q}}\) :

Q-axis component of synchronous reactance (p.u)

\(X_{{{\text{SVeC}}}}\) :

Equivalent reactance of series vectorial compensator

\(X_{12}\) :

Reactance of transmission line between node 1 and 2 (p.u)

\(Y\) :

Output vector

\(\delta\) :

Rotor angle (rad)

\(\omega\) :

Rotor speed (rad/s)

\(\theta\) :

Bus voltage angle (rad)

\(\zeta\) :

Dam** ratio

\(\omega_{{\text{S}}}\) :

Synchronous speed (rad./s)

\({\lambda }\) :

Eigen value

\({\tilde{{A}}}\), \({\tilde{{B}}}\), \({\tilde{{C}}}\) :

Transformation matrices of A, B, C

\({\tilde{{A}}}_{11}\), \({\tilde{{A}}}_{12}\), \({\tilde{{A}}}_{21}\),\( {\tilde{{A}}}_{22}\) :

System matrices in regular patrician form

References

  1. Anderson PM, Fouad AA (2003) Power system control and stability. Wiley, India

    Google Scholar 

  2. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-hill, New York

    Google Scholar 

  3. Safari A, Shayeghi H, Shayanfar HA (2016) Coordinated control of pulse width modulation-based AC link series compensator and power system stabilizers. Electr Power Energy Syst 83:117–123. https://doi.org/10.1016/j.ijepes.2016.03.042

    Article  Google Scholar 

  4. Hingorani NH, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission system. Wiley-IEEE press, India

    Google Scholar 

  5. Lopes LAC, Joos G (2001) Pulse width modulated capacitor for series compensation. IEEE Trans Power Electron 16:167–174. https://doi.org/10.1109/63.911140

    Article  ADS  Google Scholar 

  6. Venkataramanan G, Johnson BK (2002) Pulse width modulated series compensator. IEEE Proc Gen Trans Dist 149:71–75. https://doi.org/10.1049/ip-gtd:20020004

    Article  Google Scholar 

  7. Mancilla-David F, Venkataramanan G (2005) A pulse width modulated AC link unified power flow controller. In: IEEE power engineering society general meeting, San Francisco, vol 2, pp 1314-1321.https://doi.org/10.1109/PES.2005.1489283

  8. Lopes LAC, Joos G, Ooi BT (1997) (1997) A PWM quadrature—booster phase shifter for AC power transmission. IEEE Trans Power Electron 12(138–144):138–144. https://doi.org/10.1109/63.554179

    Article  ADS  Google Scholar 

  9. Mancilla-David F, Bhattacharya S, Venkataraman G (2008) A comparative evaluation of series power-flow controllers using DC and AC-link converters. IEEE Trans Power Del 23:985–996. https://doi.org/10.1109/TPWRD.2008.917702

    Article  Google Scholar 

  10. Simon O, Mahlein J, Muenzer MN, Bruckmann M (2002) Modern solutions for industrial matrix-converter applications. IEEE Trans Ind Electron 49:401–406. https://doi.org/10.1109/41.993273

    Article  Google Scholar 

  11. Gonalez JM, Canizares CA, Ramirez JM (2010) Stability modelling and comparative study of series vectorial compensators. IEEE Trans Power Deliv 25:1093–1103. https://doi.org/10.1109/TPWRD.2009.2034905

    Article  Google Scholar 

  12. Safari A, Shayanfar HA, Kazemi A, Shayeghi H (2014) Dynamic modelling of PWM-based AC link series compensator. : Arab J Sci Eng 39:1971–1981. https://doi.org/10.1007/s13369-013-0740-9

    Article  Google Scholar 

  13. Safari A, Shayanfar HA, Kazemi A, Shayeghi H (2016) Coordinated control of pulse width modulation based AC link series compensator and power system stabilizers. Electr Power Energy Syst 83:117–123. https://doi.org/10.1016/j.ijepes.2016.03.042

    Article  Google Scholar 

  14. Safari A, Shayanfar HA, Kazemi A (2003) Robust PWMSC dam** controller tuning of the Augmented Lagrangian PSO algorithm. IEEE Trans Power Syst 28:4665–4673. https://doi.org/10.1109/TPWRS.2013.2271814

    Article  ADS  Google Scholar 

  15. Wang L, Truong DN (2012) Application of a SVeCand a SSSC on dam** improvement of a SG-based power system with a PMSG-based offshore wind farm. In: Proceedings of IEEE PES general meeting, San Diego, CA, USA

  16. Wang L et al (2012) Comparative stability enhancement of PMSG- based Offshore win farm fed to an SG-based power system using an SSSC and an SVeC. IEEE Trans Power Syst 28:1336–1344. https://doi.org/10.1109/TPWRS.2012.2211110

    Article  ADS  Google Scholar 

  17. Ghosh A, Ledwich G, Malik OP, Hope GS (1984) Power system stabilizer based on adaptive control techniques. IEEE Trans Power Appar Syst 103:1983–1989. https://doi.org/10.1109/TPAS.1984.318503

    Article  ADS  Google Scholar 

  18. Shayeghi H, Shayanfar HA, Jalli (2009) Load frequency control strategies: a state of the art survey for the researcher. Energy Convers Manag 50:344–353. https://doi.org/10.1016/j.enconman.2008.09.014

    Article  Google Scholar 

  19. Ibraheem PK, Kothari DP (2005) Recent philosphies of automatic generation control startegies in power system. IEEE Trans Power Syst 20:346–357. https://doi.org/10.1109/TPWRS.2004.840438

    Article  ADS  Google Scholar 

  20. Kothari ML, Nanda J, Bhattacharya K (1993) Design of variable structure power system stabilisers with desired eigenvalues in the sliding mode. In: IEE proceedings generation, transmission and distribution, vol 140, pp 263-267. https://doi.org/10.1049/ip-c.1993.0039

  21. Hsu YY, Chan Y (1983) Stabilization of power systems using a variable structure stabilizer. Electr Power Syst Res 6:129–139. https://doi.org/10.1016/0378-7796(83)90014-7

    Article  Google Scholar 

  22. Chan WC, Hsu YY (1983) An optimal variable structure stabilizer for power system stabilization. IEEE Trans Power Appar Syst 102:1738–1746. https://doi.org/10.1109/TPAS.1983.317916

    Article  ADS  Google Scholar 

  23. Utkin VI, Yang KD (1978) Methods for constructing discontinuity planes in multidimensional variable structure systems. Autom Remote Control 39:1466–1470. https://doi.org/10.1016/0005-1098(78)90071-7

    Article  MathSciNet  Google Scholar 

  24. Luor T-S, Hsu Y-Y (1998) Design of an output feedback varaible structure thyristor-controlled series compensator for improving power system stability. Electr Power Syst Res 47:71–77. https://doi.org/10.1016/S0378-7796(98)00049-2

    Article  Google Scholar 

  25. Balochian S (2015) On the stabilization of linear time invariant fractional order commensurate switched systems. Asian J Control 17:133–141. https://doi.org/10.1002/asjc.858

    Article  MathSciNet  Google Scholar 

  26. Tabasi M, Balochain S (2021) Synchronization of fractional order chaotic system of Sprott circuit using fractional active fault tolerant controller. Int J Dyn Control 9:1695–1702. https://doi.org/10.1007/s40435-021-00762-y

    Article  MathSciNet  Google Scholar 

  27. Shahri M, Balochain S, Balochian H, Zhang Y (2014) Design of fractional-order PID controllers for time delay using differential evolution algorithm. Indian J Sci Technol 7:1307–1315. https://doi.org/10.17485/IJST/2014/V7I9/43866

    Article  Google Scholar 

  28. Mondal D, Chakrabarti A, Sengupta A (2014) Power system small signal stability and control. Academic Press, Elsevier

    Google Scholar 

  29. Sauer PW, Pai MA (1998) Power system dynamics and stability. Prentice-Hall Publisher, New Jersey

    Google Scholar 

  30. Himaja K, Surendra TS, Tara Kalyani S (2021) Dynamic stability analysis of a SMIB system with PSS and LQR optimal control. In: Proceedings of ICIPTM, Noida, India. https://doi.org/10.1109/ICIPTM52218.2021.9388318

  31. Liao K, He Z, Xu Y, Chen G, Dong ZY, Wong KP (2017) A sliding mode based dam** control of DFIG for interarea power oscillations. IEEE Trans Sustain Energy 8:258–267. https://doi.org/10.1109/TSTE.2016.2597306

    Article  ADS  Google Scholar 

  32. Sonfack LL, Kenne G, Fombu AM (2018) A new static synchronous series compensator control strategy based on SMIB system RBF neuro-sliding mode technique for power flow control and DC voltage regulation. Electr Power Compon Syst 46:456–471. https://doi.org/10.1080/15325008.2018.1445795

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Himaja.

Ethics declarations

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Appendices

Appendices

$$ \begin{aligned} & H = 2.37\,\text{s}\;D = 0,\;K_{\rm A} = 400,\;R_{\text{S}} = 0.0\;\text{pu},\;R_{\text{e}} = 0.02\;\text{pu},\\ &\;T_{\text{d}} = 5.90s,\;T_{\rm A} = 0.2s\;\omega_{{\text{s}}} = 3.14\;{\text{rad/sec,}} \\ & X_{{\rm d}} = 1.70\;\text{pu},\;X_{\text{d}}^{^{\prime}} = 0.245\;\text{pu},\;X_{\text{e}} = 0.7\;\text{pu},\;X_{\text{q}} = 1.64\;\text{pu},\\ &\;V_{\inf } = 1.00\angle 0^{\circ} \;\text{pu},\;V_{\text{T}} = 1.72\angle 19.31^{\circ} \\ \end{aligned} $$

SVeC data

$$ K_{\text{SVeC}} = 4.0,\;T_{1} = 0.5,\;T_{2} = 0.1,\;T_{\text{SVeC}} = 25 $$

1.1 Computation of initial conditions in SMIB system

THETA1 = (pi*THETA)/180 = 0. 3370 (Voltage angle in radian).

THETA2 = (pi*0)/180 = 0 (Voltage angle in radian)

$$ V_{\text{i}} = 1.172;\;V_{\inf } = 1.0;\;X_{\text{eff}} = X_{\text{e}} = 0.7\;{\text{p}}.{\text{u}}; $$
$$ X_{\text{T}} = X_{\text{d}}^{^{\prime}} + X_{\text{eff}} = {0}{\text{.9450\;p}}.{\text{u}}; $$
$$ V_{1} = V_{\text{i}} *\exp (i*\text{THETA1}) = 1.1061 + i0.3876; $$
$$ V_{2} = V_{\inf } *\exp (i*\text{THETA2}) = 1; $$
$$ I_{\text{G}} = (V_{1} - V_{2} )/\left( {R_{\text{e}} + i*X_{\text{T}} } \right) = 0.4123 - i0.1035 $$
  • Step 1: \(\begin{aligned} E & = \left( {V_{1} + \left( {R_{\text{S}} + i*X_{\text{q}} } \right)*I_{\text{G}} } \right) = 1.2758 + i1.0637 \\ & = 1.6611\angle {0}{\text{.6950}} \\ \end{aligned}\)

    $$ \delta = {0}{{.6950*180/3}}{.14} = {39}{{.8401}}\; \left( {{\text{Voltage}}\;{\text{angle}}\;{\text{in}}\;{\text{degrees}}} \right) $$
  • Step 2: \(I_{\text{dq}} = I_{\text{G}} *e^{{ - i\left( {\delta + \pi /2} \right)}} \;(\delta - {\text{angle in radian}}).\)

    \(\begin{aligned} I_{\text{d}} & = \text{real}\left( {I_{\text{dq}} } \right)\;{\text{and}}\;I_{\text{q}} = \text{imag}\left( {I_{\text{dq}} } \right) \\ V_{\text{dq}} & = V_{1} e^{{ - i\left( {\delta + 3.14/2} \right)}} \;(\delta - {\text{angle in radian}}) \\ \end{aligned}\)

    \(V_{\text{d}} = \text{real}\left( {V_{\text{dq}} } \right)\;{\text{and}}\;V_{\text{q}} = \text{imag}\left( {V_{\text{dq}} } \right)\)

  • Step 3: \(E_{{d}}^{^{\prime}} = V_{\text{d}} + R_{\text{S}} I_{\text{q}} - X_{\text{q}} I_{\text{q}}\).

  • Step 4: \(E_{\text{q}}^{^{\prime}} = V_{\text{q}} + R_{\text{S}} I_{\text{q}} + X_{\text{d}}^{^{\prime}} I_{\text{d}}\).

  • Step 5: \(E_{\text{fd}} = E_{\text{q}}^{^{\prime}} + \left( {X_{\text{d}} - X_{\text{d}}^{^{\prime}} } \right)I_{\text{d}}\).

  • Step 6: \(V_{\text{ref}} = V_{\text{i}} + \left( {{\raise0.7ex\hbox{${E_{\text{fd}} }$} \!\mathord{\left/ {\vphantom {{E_{\text{fd}} } {K_{A} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${K_{A} }$}}} \right)\) and \(T_{\text{M}} = E_{\text{q}}^{^{\prime}} I_{\text{q}} + \left( {X_{\text{q}} - X_{\text{d}}^{^{\prime}} } \right)I_{\text{d}} I_{\text{q}}\).

1.2 Calculation of K-constants in SMIB system

In SMIB system, considering 0.02 external resistance i.e. \(R_{\text{e}} = 0.02\) [28] and calculate the K-constants using [28]

$$ \Delta_{\text{e}} = R_{\text{e}}^{2} + \left( {X_{\text{eff}} + X_{\text{d}}^{^{\prime}} } \right)\left( {X_{\text{eff}} + X_{\text{q}} } \right) = { 2}{\text{.2117}} $$
$$ \frac{1}{{K_{3} }} = 1 + \frac{{\left( {X_{\text{d}} - X_{\text{d}}^{\prime } } \right)\left( {X_{\text{q}} + X_{\text{e}} } \right)}}{{\Delta_{\text{e}} }} = 2.5394 $$

(\(\delta\)-angle in radian)

$$ \begin{aligned} K_{4} & = V_{\infty } \frac{{\left( {X_{{\text{d}}} - X_{{\text{d}}}^{\prime } } \right)}}{{\Delta _{{\text{e}}} }}\left[ {\left( {X_{{\text{q}}} + X_{{\text{e}}} } \right)\sin \delta - R_{{\text{e}}} \cos \delta } \right] \\ K_{1} & = - \frac{1}{{\Delta _{{\text{e}}} }}\left[ {\begin{array}{*{20}l} {I_{{\text{q}}} V_{\infty } \left( {X_{{\text{d}}}^{\prime } - X_{{\text{q}}} } \right)\left\{ {\left( {X_{{\text{q}}} + X_{{\text{e}}} } \right)\sin \delta - R_{{\text{e}}} \cos \delta } \right\} + } \\ {V_{\infty } \left\{ {\left( {X_{{\text{d}}}^{\prime } - X_{{\text{q}}} } \right)I_{{\text{d}}} - E_{{\text{d}}}^{\prime } } \right\}\left\{ {\left( {X_{{\text{d}}}^{\prime } + X_{{\text{e}}} } \right)\cos \delta + R_{{\text{e}}} \sin \delta } \right\}} \\ \end{array} } \right] \\ \end{aligned} $$

(\(\delta\)-angle in radian)

$$ \begin{aligned} K_{2} & = \frac{1}{{\Delta _{{\text{e}}} }}\left[ {\begin{array}{*{20}l} {I_{{\text{q}}} \Delta _{{\text{e}}} - I_{{\text{q}}} \left( {X_{{\text{d}}}^{\prime } - X_{{\text{q}}} } \right)\left( {X_{{\text{q}}} + X_{{\text{e}}} } \right) - } \\ {R_{{\text{e}}} \left( {X_{{\text{d}}}^{\prime } - X_{{\text{q}}} } \right)I_{{\text{d}}} + R_{{\text{e}}} E_{{\text{q}}}^{\prime } } \\ \end{array} } \right] \\ K_{5} & = \frac{1}{{\Delta _{{\text{e}}} }}\left[ {\begin{array}{*{20}l} {\frac{{V_{{\text{d}}} }}{{V_{{\text{i}}} }}X_{{\text{q}}} \left\{ {R_{{\text{e}}} V_{\infty } \sin \delta + V_{\infty } \cos \delta \left( {X_{{\text{d}}}^{\prime } + X_{{\text{e}}} } \right)} \right\} + } \\ {\frac{{V_{{\text{q}}} }}{{V_{{\text{i}}} }}X_{{\text{d}}}^{\prime } \left\{ {R_{{\text{e}}} V_{\infty } \cos \delta - V_{\infty } \left( {X_{{\text{e}}} + X_{{\text{q}}} } \right)\sin \delta } \right\}} \\ \end{array} } \right] \\ \end{aligned} $$
$$ K_{6} = \frac{1}{{\Delta_{\text{e}} }}\left[ {\frac{{V_{\text{d}} }}{{V_{\text{i}} }}R_{\text{e}} X_{\text{q}} - \frac{{V_{\text{d}} }}{{V_{\text{i}} }}X_{\text{d}}^{^{\prime}} \left( {X_{\text{q}} + X_{\text{e}} } \right)} \right] + \frac{{V_{\text{d}} }}{{V_{\text{T}} }} $$

1.3 Calculation of ‘A’ and ‘b’ matrices in state space model for SMIB system

The state-space model of the system is represented as [28]

$$ \dot{x} = Ax + Bu $$

where

$$ A = \left[ {\begin{array}{*{20}l} { - \frac{1}{{K_{3} T_{\text{d}} }}} & { - \frac{{K_{4} }}{{T_{do}^{^{\prime}} }}} & 0 & {\frac{1}{{T_{do}^{^{\prime}} }}} \\ 0 & 0 & {\omega_{\text{S}} } & 0 \\ { - \frac{{K_{2} }}{2H}} & { - \frac{{K_{1} }}{2H}} & { - \frac{{D\omega_{\text{S}} }}{2H}} & 0 \\ { - \frac{{K_{A} K_{6} }}{{T_{A} }}} & { - \frac{{K_{A} K_{5} }}{{T_{A} }}} & 0 & { - \frac{1}{{T_{A} }}} \\ \end{array} } \right] $$
$$ b = \left[ {\begin{array}{*{20}l} 0 & 0 \\ 0 & 0 \\ {\frac{1}{{\left( {2H} \right)}}} & 0 \\ 0 & {\frac{{K_{A} }}{{T_{A} }}} \\ \end{array} } \right] $$

1.4 Computation of initial conditions in SMIB system with SVeC

The calculation of effective reactance of the SMIB system with SVeC is \(X_{\text{SVeC}} = 0.7044\) p.u (Consider the Duty Ratio from zero to 1)

$$ X_{\text{C1}} = 10\;{\text{p}}.{\text{u}} $$
$$ X_{\text{C}} = X_{{_{\text{C1}} }} /529.02\;\left( {{\text{Convert}}\;{\text{ to}}\;{\text{ p}}.{\text{u}}\;{\text{ values}}} \right) $$
$$ dX_{\text{SVeC}} = 10.4013\; \left( {{\text{According}}\;{\text{to}}\;{\text{the}}\;{\text{ref}}\;\left[ {{11}} \right]} \right) $$
$$ X_{\text{eff}} = X_{\text{e}} - X_{\text{SVeC}} = 1.4044\,{\text{p}}.{\text{u}} $$
$$ X_{\text{T}} = X_{\text{d}}^{^{\prime}} + X_{\text{e}} = 1.6474\;{\text{p}}.{\text{u}} $$

1.5 Calculation of K-constants and A and B matrices in state-space form for SMIB system with SVeC Δe = 5.0216

The equations for calculation of initial conditions with SVeC are similar to septs from 1 to 6, presented in Section “Calculation of K-constants in SMIB system”, and all are in p.u

$$ I_{\text{G}} = \left( {V_{1} - V_{2} } \right)/\left( {R_{\text{e}} + i*X_{\text{T}} } \right) = 0.2770 + 0.0716i $$

Calculation of K-constants and A and B matrices in state-space form for SMIB system with SVeC

$$ \Delta_{\text{e}} = {5}{\text{.0216}} $$

The equations for calculation of K-constants are presented in Section “Calculation of ‘A’ and ‘b’ matrices in state space model for SMIB system”.

The installation of SVeC in SMIB system results in addition of state variables corresponding to the SVeC controller \(\Delta X_{\text{SVeC}} = \left[ {\begin{array}{*{20}l} {\Delta D_{\text{S}} } & {\Delta X_{\text{SVeC}} } \\ \end{array} } \right]^{T}\) in equations presented in Section “Computation of initial conditions in SMIB system with SVeC” to the ‘A’ matrix [11, 12]. The modified state variables with SVeC controller as

$$ \dot{x} = Ax + Bu $$

where

$$ \Delta x = \left[ {\begin{array}{*{20}l} {\Delta E_{\text{q}}^{^{\prime}} } & {\Delta \delta } & {\Delta \omega } & {\Delta E_{\text{fd}} } & {\Delta D_{\text{S}} } & {\Delta X_{\text{SVeC}} } \\ \end{array} } \right] $$

In \(\Delta x\), the state variables, \(\Delta D_{\text{S}}\) and \(\Delta X_{\text{SVeC}}\) are the state variables of SVeC and the other variables are discussed in Sect. 2.1. The eigenvalues of the system matrix will be increased to two. The total eigenvalues of the system matrix with the installation of SVeC in SMIB system is six.

The equations corresponding to the SVeC controller are added in the HP model of SMIB system [15, 16]. Here

\(K_{2} = \frac{{\partial P_{\text{e}} }}{{\partial E_{\text{q}}^{^{\prime}} }},\;K_{1} = \frac{{\partial P_{\text{e}} }}{\partial \delta }\;{\text{and}}\;K_{{D_{\text{S}} }} = \frac{{\partial P_{\text{e}} }}{{\partial D_{\text{S}} }}.\)

Assuming stator resistance \(R_{\text{S}} = 0\), the electrical power \(\left( {P_{\text{e}} } \right)\) is.

\(P_{\text{e}} = \frac{{E_{\text{q}}^{^{\prime}} V_{\infty } \sin \delta }}{{X_{\text{T}} }},\),where \(X_{\text{T}} = X_{\text{d}}^{^{\prime}} + X_{\text{eff}}\) and \(X_{\text{eff}} = X_{\text{e}} - X_{\text{SVeC}} \left( {D_{\text{S}} } \right)\) where \(D_{\text{S}}\) is the duty ratio of the switches.

The system matrix Asys for the corresponding model can be obtained as

$$ \left[ {\begin{array}{*{20}l} { - \frac{1}{{K_{3} T_{{{\text{do}}}}^{\prime } }}} & { - \frac{{K_{4} }}{{T_{{{\text{do}}}}^{\prime } }}} & 0 & {\frac{1}{{T_{{{\text{do}}}}^{\prime } }}} & 0 & 0 \\ 0 & 0 & {\omega_{{\text{s}}} } & 0 & 0 & 0 \\ { - \frac{{K_{{2}} }}{{2{\text{H}}}}} & { - \frac{{K_{{1}} }}{{2{\text{H}}}}} & { - \frac{{D\omega_{{\text{s}}} }}{{2{\text{H}}}}} & {\frac{{K_{{{\text{D}}_{{\text{s}}} }} }}{{2{\text{H}}}}} & 0 & 0 \\ { - \frac{{K_{{\text{A}}} K_{{6}} }}{{T_{{\text{A}}} }}} & { - \frac{{K_{{\text{A}}} K_{{5}} }}{{T_{{\text{A}}} }}} & 0 & { - \frac{1}{{T_{{\text{A}}} }}} & {\frac{{K_{{\text{A}}} }}{{T_{{\text{A}}} }}} & 0 \\ {\frac{{K_{{2}} T_{{1}} }}{{T_{{2}} }}\left( {\frac{{K_{{{\text{sVeC}}}} }}{{2{\text{H}}}}} \right)} & {\frac{{K_{{1}} T_{{1}} }}{{T_{{2}} }}\left( {\frac{{K_{{{\text{sVeC}}}} }}{{2{\text{H}}}}} \right)} & {\left( { - \frac{{K_{{{\text{sVeC}}}} }}{{T_{{2}} }} + - \frac{{K_{{{\text{sVeC}}T_{{1}} }} }}{{T_{{2}} }} - \frac{{D\omega_{{\text{s}}} }}{{2{\text{H}}}}} \right)} & 0 & { - \frac{1}{{T_{2} }}\left( {\frac{{ - K_{{{\text{sVeC}}T_{{1}} K_{{{\text{Ds}}}} }} }}{{2{\text{HT}}_{2} }}} \right)} & 0 \\ 0 & 0 & 0 & 0 & { - \frac{1}{{T_{{{\text{sVeC}}}} }}} & { - \frac{1}{{T_{{{\text{sVeC}}}} }}} \\ \end{array} } \right] $$
$$ B\_\text{SVeC} = \left[ {\begin{array}{*{20}l} 0 & 0 \\ 0 & 0 \\ \frac{1}{2H} & 0 \\ 0 & {\frac{{K_{A} }}{{T_{A} }}} \\ { - \frac{{K_{\text{SVeC}} T_{1} }}{{\left( {2HT_{2} } \right)}}} & 0 \\ 0 & 0 \\ \end{array} } \right] $$
$$ n_{\text{i}} = \text{rank}\left( {A\_\text{SVeC}} \right) = 6 $$
$$ m_{\text{i}} = {\text{rank}}\left( {{\text{B}\_\text{SVeC}}} \right) = 2m_{\text{i}} = {\text{rank}}\left( {{\text{B}\_\text{SVeC}}} \right) = 2 $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himaja, K. Design of an output feedback variable structure series vectorial compensator to enhance dynamic stability. Int. J. Dynam. Control 12, 737–752 (2024). https://doi.org/10.1007/s40435-023-01183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01183-9

Keywords

Navigation