Log in

Dynamic Modeling of PWM-Based AC Link Series Compensator

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes the theory and modeling technique of a novel controller based on PWM-based series compensator (PWMSC) with AC link. This is a new flexible AC transmission systems device for power flow control of transmission line and dam** of low-frequency oscillations. The paper demonstrates the basic module, steady state operation, mathematical analysis, current injection modeling and dynamic control model of the PWMSC. The main contribution of this work is that a current injection model of the PWMSC for studying the effect of the PWMSC on the low-frequency oscillations is proposed. A brief comparison of this series compensator equipped with a power oscillation dam** stabilizer with thyristor-controlled series capacitors (TCSC) is presented for dynamic series compensation of transmission lines. The results obtained show that the proposed model is efficient for studying the effects of the PWMSC on the electromechanical oscillations and it has better oscillation dam** characteristics than the TCSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({E'_{\rm q}}\) :

Internal voltage behind transient reactance

E fd :

Equivalent excitation voltage

FACTS:

Flexible alternating current transmission systems

IPFC:

Interline power flow controller

K PWMSC :

Regulator gain

M :

Machine inertia coefficient

POD:

Power oscillation dam**

PSS:

Power system stabilizer

PWMSC:

Pulse width modulated series compensator

P e :

Electrical output power

P m :

Mechanical input power

SSSC:

Synchronous static series compensator

TCSC:

Thyristor controlled series capacitor

TSSC:

Thyristor switched series capacitor

T 1 :

Lead time constant of controller

T 2 :

Lag time constant of controller

T 3 :

Lead time constant of controller

T 4 :

Lag time constant of controller

T PWMSC :

Regulator time constant

\({T'_{\rm do}}\) :

Time constant of excitation circuit

T e :

Electric torque

UPFC:

Unified power flow controller

V i :

Terminal voltage

v ref :

Reference voltage

ω :

Rotor speed

δ :

Rotor angle

References

  1. Prasertwong K., Mithulananthan N., Thakur D.: Understanding low frequency oscillation in power systems. Int. J. Electr. Eng. Educ. 47, 248–262 (2010)

    Article  Google Scholar 

  2. Anderson, P.M.; Fouad, A.A.: Power System Control and Stability. Iowa State University Press, Ames (1977)

  3. Hingorani, N.G.; Gyugyi, L.: Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, Hoboken (1999)

  4. Ishimaru, M.; Yokoyama, R.; Shirai, G.; Niimura, T.: Robust thyristor controlled series capacitor design based on linear matrix inequality for a multimachine power system. Electr. Power Energy Syst. 24, 621–629 (2002)

    Google Scholar 

  5. Shayeghi, H.; Shayanfar, H.A.; Jalilzadeh, S.; Safari, A.: A PSO based unified power flow controller for dam** of power system oscillations. Energy Convers. Manag. 50, 2583–2592 (2009)

    Google Scholar 

  6. Kazemi, A.; Vakili Sohrforouzani, M.: Power system dam** controlled facts devices. Electr. Power Energy Syst. 28, 349–357 (2006)

    Google Scholar 

  7. Johansson, N.; Angquist, L.; Nee, H.P.: An adaptive controller for power system stability improvement and power flow control by means of a thyristor switched series capacitor (TSSC). IEEE Trans. Power Syst. 25(1), 381–391 (2010)

    Google Scholar 

  8. Sen, K.K.: Static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv. 13(1), 241–246 (1998)

    Google Scholar 

  9. Mishra, S.; Dash, P.K.; Hota, P.K.; Tripathy, M.: Genetically optimized Neuro-Fuzzy IPFC for dam** modal oscillations of power system. IEEE Trans. Power Syst. 17, 1140–1147 (2002)

    Google Scholar 

  10. Lopes, L.A.C.; Joos, G.: Pulse width modulated capacitor for series compensation. IEEE Trans. Power Electron. 16(2), 167–174 (2001)

    Google Scholar 

  11. Venkataramanan, G.; Johnson, B.K.: Pulse width modulated series compensator. IEE Proc. Gener. Transm. Distrib. 149(1), 71–75 (2002)

  12. Venkataramanan, G.: Three-phase vector switching converters for power flow control. IEE Proc. Elect. Power Appl. 151(3), 321–333 (2004)

  13. **, H.; Joós, G.; Lopes, L.A.: An efficient switched-reactor/capacitor-based static var compensator. IEEE Trans. Indus. Appl. 30, 998–1005 (1994)

    Google Scholar 

  14. Lopes, L.A.C.; Joós, G.; Ooi, B.T.: A PWM quadrature-booster phase shifter for AC power transmission. IEEE Trans. Power Electron. 12, 138–144 (1997)

    Google Scholar 

  15. Mancilla-David, F.; Bhattacharya, S.; Venkataramanan, G.: A comparative evaluation of series power-flow controllers using DC- and AC-link converters. IEEE Trans. Power Deliv. 23(2), 985–996 (2008)

    Google Scholar 

  16. Simon, O.; Mahlein, J.; Muenzer, M.N.; Bruckmann, M.: Modern solutions for industrial matrix-converter applications. IEEE Trans. Indus. Electron. 49(2), 401–406 (2002)

    Google Scholar 

  17. Wheeler, P.; Clare, J.; Empringham, L.; Apap, M.; Bland, M.: Matrix converters. Power Eng. J. 16(6), 273–282 (2002)

    Google Scholar 

  18. Mancilla-David, F.; Venkataramanan, G.: A pulse width modulated AC link unified power flow controller. In: IEEE Power Engineering Society General Meeting, San Francisco, CA, vol. 2, pp. 1314–1321, July 2005

  19. Ramirez, J.M.; Gonzalez, J.M.; Crow, M.L.: Steady state formulation of FACTS devices based on ac/ac converters. IEE Proc. Electric Power Appl. 1(4), 619–631, July 2007

  20. Gonzalez, J.M.; Ramirez, J.M.: AC/AC series converter in transient stability. In: Proc. NAPS, Las Cruces, NM, pp. 205–211, Sept 2007

  21. Helbing, S.G.; Karady, G.G.: Investigations of an advanced form of series compensation. IEEE Trans. Power Deliv. 9, 939–947 (1994)

    Google Scholar 

  22. Caro, J.C.R.: Simple Topologies for power conditioners and FACTS controllers. Ph.D. Thesis, Electrical Engineering department, Guadalajara University, March 2009

  23. Lu, J.; Han, F.; Yu, X.; Chen, G.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica. 40(10), 1677–1687 (2004)

    Google Scholar 

  24. Lu, J.; Yu, S.; Leung, H.; Chen, G.: Experimental verification of multidirectional multi-scroll chaotic attractors. IEEE Trans. Circuit. Syst. I. 53(1), 149–165 (2006)

    Google Scholar 

  25. Yu, S.; Lu, J.; Yu, X.; Chen, G.: Design and implementation of grid multiwing hyperchaotic lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuit. Syst. I. (2012). doi:10.1109/TCSI.2011.2180429

  26. Lu J., Chen G.: Generating multi-scroll chaotic attractors: theories, methods and applications. Int. J. Bifurcation Chaos. 16(4), 775–858 (2006)

    Article  Google Scholar 

  27. So, P.L.; Chu, Y.C.; Yu, T.: Coordinated control of TCSC and SVC for system dam**. Int. J. Control Autom. Syst. 3(2) (special edition), 322–333 (2005)

    Google Scholar 

  28. Sadikovic, R.: Dam** controller design for power system oscillations, Internal Report, Zurich (2004)

  29. Pal, B.; Chaudhuri, B.: Robust Control in Power Systems. Springer Science, New York (2005)

  30. Padiyar, K.R.: Power system dynamics stability and control. Wiley, Singapore (1996)

  31. Kundur, P.: Power System Stability and Control. McGrew Hill, New York (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari, A., Shayanfar, H.A., Kazemi, A. et al. Dynamic Modeling of PWM-Based AC Link Series Compensator. Arab J Sci Eng 39, 1971–1981 (2014). https://doi.org/10.1007/s13369-013-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0740-9

Keywords

Navigation