Log in

Wear behavior of Zn-38Al-3.5Cu-1.2Mg/SiCp composite under different stabilization treatments

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A Zn-38Al-3.5Cu-1.2Mg composite reinforced with nano-SiCp was fabricated via stirring-assisted ultrasonic vibration. To improve the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite, several stabilization treatments with distinct solid solutions and aging temperatures were designed. The results indicated that the optimal stabilization treatment for the Zn-38Al-3.5Cu-1.2Mg/SiCp composite comprised solution treatment at 380°C for 6 h and aging at 170°C for 48 h. The stabilization treatment led to the formation of dispersive and homogeneous nano-SiCp. During the friction wear condition, the nano-SiCp limited the microstructure evolution from the hard α(Al,Zn) phase to the soft β(Al,Zn) phase. Moreover, the increased amount of nano-SiCp improved the grain dimension and contributed to the composite abrasive resistance. Furthermore, the stabilization treatment suppressed the crack initiation and propagation in the friction wear process, thereby improving the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Azakli and T. Savaşkan, An examination of friction and sliding wear properties of Zn-40Al-2Cu-2Si alloy in case of oil cut off, Tribol. Int., 41(2008), 1, p. 9.

    Article  CAS  Google Scholar 

  2. S. Temel, A.M. Reza, and O.T. Hasan, Tribological properties of Zn-25Al-3Cu-1Si alloy, Tribol. Int., 81(2015), p. 105.

    Article  Google Scholar 

  3. T. Liu, N.C. Si, G.L. Liu, R. Zhang, and C.Y. Qi, Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn-38Al-2.5Cu alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1775.

    Article  CAS  Google Scholar 

  4. S. Liu, Q. Yuan, Y.Q. Gong, G. Xu, and W.W. Qiao, Relationship between microstructure and dry wear behavior of compocast nano-SiC(p)+micro-Gr(p)/Zn-35Al-1.2Mg-0.2Sr composite under different chilling conditions, Kovove Mater., 58(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  5. S.K. Mishra, S. Biswas, and A. Satapathy, A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites, Mater. Des., 55(2014), p. 958.

    Article  CAS  Google Scholar 

  6. B. Biljana, B. Jelena, B. Ilija, and J. Bore, Corrosion influence on surface appearance and microstructure of compo cast ZA27/SiCp composites in sodium chloride solution, Trans. Nonferrous Met. Soc. China, 26(2016), No. 6, p. 1512.

    Article  Google Scholar 

  7. S. Liu, Q. Yuan, Y.Q. Gong, Y.L. Zhou, L.X. Li, and G. Xu, Correlations between microstructure and dry friction wear behavior of Zn-38Al-3.5Cu-1.2 Mg alloy reinforced with SiC nanoparticles, Trans. Indian Inst. Met., 72(2019), No. 10, p. 2557.

    Article  CAS  Google Scholar 

  8. H.A. Deore, J. Mishra, A.G. Rao, H.V. Mehtani, and D. Hiwarkar, Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites, Surf. Coat. Technol., 374(2019), p. 52.

    Article  CAS  Google Scholar 

  9. L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on themicrostructure, mechanical properties and anisotropy of hot extruded Al-Mg-Si plate, Mater. Des., 182(2019), art. No. 107999.

  10. M.B. Seyedeh, J.A. Hamed, and J. Roohollah, Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083-15wt%Zn composites, Surf. Coat. Technol., 384(2020), art. No. 125307.

  11. P. Liu, L.L. Hu, Q.H. Zhang, C.P. Yang, Z.S. Yu, J.Q. Zhang, J.M. Hu, and F.H. Cao, Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions, J. Mater. Sci. Technol., 64(2019), p. 85.

    Article  Google Scholar 

  12. Y.C. Chiu, K.T. Du, H.Y. Bor, G.H. Liu, and S.L. Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al-Zn-Mg-Cu alloys, Mater. Chem. Phys., 247(2020), art. No. 122853.

  13. Z.Q. Zhang, J.H. Yu, and D.Y. He, Effect of contact solid solution process on peak aging of Al-Zn-Mg-Cu alloys, J. Mater. Res. Technol., 9(2020), No. 3, p. 6940.

    Article  CAS  Google Scholar 

  14. J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and Re-aged Al-Zn-Mg-Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469.

  15. X.W. Li, Q.Z. Cai, B.Y. Zhao, B. Liu, and W.W. Li, Precipitation behaviors and properties of solution-aging Al-Zn-Mg-Cu alloy refined with TiN nanoparticles, J. Alloys Compd., 746(2018), p. 462.

    Article  CAS  Google Scholar 

  16. H.B. Zhang, B. Wang, Y.T. Zhang, Y. Li, J.L. He, and Y.F. Zhang, Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites, J. Alloys Compd., 814(2020), art. No. 152357.

  17. W.H. Yuan and B.L. An, Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2080.

    Article  CAS  Google Scholar 

  18. G.N. Ma, D. Wang, Z.Y. Liu, B.L. **ao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites, Mater. Charact., 158(2019), art. No. 109966.

  19. W. L. Zhang, X. Ma, and D.Y. Ding, Aging behavior and tensile response of a SiC reinforced eutectoid zinc-aluminium-copper alloy matrix composite, J. Alloys Compd., 727(2017), p. 375.

    Article  CAS  Google Scholar 

  20. Q. Yuan, G. Xu, S. Liu, M. Liu, H.J. Hu, and G.Q. Li, Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite, Metals, 8(2018), No. 7, p. 518.

    Article  Google Scholar 

  21. Q. Yuan, G. Xu, M. Liu, H.J. Hu, and J.Y. Tian, Effects of rolling temperature on the microstructure and mechanical properties in an ultrafine-grained low-carbon steel, Steel Res. Int., 90(2019), art. No. 1800318.

  22. Q. Yuan, G. Xu, J.Y. Tian, and W.C. Liang, The recrystallization behavior in ultrafine-grained structure steel fabricated by cold rolling and annealing, Arab. J. Sci. Eng., 42(2017), No. 11, p. 4771.

    Article  CAS  Google Scholar 

  23. Q. Yuan, G. Xu, M. Liu, S. Liu, and H.J. Hu, Evaluation of mechanical properties and microstructures of ultrafine grain low-carbon steel processed by cryorolling and annealing, Trans. Indian Inst. Met., 72(2019), No. 3, p. 741.

    Article  CAS  Google Scholar 

  24. Q. Yuan, G. Xu, S. Liu, M. Liu, and H.J. Hu, Effects of strain rate on the microstructure of ultrafine grained medium-carbon steel, Arch. Metall. Mater., 63(2018), No. 4, p. 1805.

    CAS  Google Scholar 

  25. X.L. Gan, Q. Yuan, G. Zhao, H.J. Hu, J.Y. Tian, and G. Xu, Investigating the properties of coil tail in Ti-Nb-Mo microalloyed hot-rolled strip, Steel Res. Int., 90(2019), art. No. 1900040.

  26. X.L. Gan, Q. Yuan, G. Zhao, H.W. Ma, W. Liang, Z.L. Xue, W.W. Qiao, and G. Xu, Quantitative analysis of microstructures and strength of Nb-Ti microalloyed steel with different Ti additions, Metall. Mater. Trans. A., 51(2020), p. 2084.

    Article  Google Scholar 

  27. W. Liang, Q. Yuan, G.H. Chen, M. Liu, and W.W. Qiao, Fracture evolution in ferrite/martensite dual phase flange steel, Ironmaking Steelmaking, 48(2021), No. 1, p. 88.

    Article  CAS  Google Scholar 

  28. M. Taya and R.J. Arsenault, A comparison between a shear lag type and eshelby type model in predicting the mechanical properties of a short fiber composite, Scripta Metall., 21(1987), No. 3, p. 349.

    Article  CAS  Google Scholar 

  29. V.C. Nardone and K.M. Prewo, On the strength of discontinuous silicon carbide reinfirced aluminum composites, Script. Metall., 20(1986), No. 1, p. 43.

    Article  CAS  Google Scholar 

  30. R. Zare, H. Sharifi, and M.R. Saeri, Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite, J. Alloys Compd., 801(2019), p. 520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52004193), the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 202110488004), the Guidance Programs of Science and Technology Research for Hubei Provincial Department of Education (No. B2020008); the National Defence Pre-research Foundation of Wuhan Univesity of Science and Technology (No. GF202006), the Postdoctoral Innovative Research Post of Hubei Province, China, and the Post-doctoral Research Funding Program of Jiangsu rovince, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yuan.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yuan, Q., Sima, Y. et al. Wear behavior of Zn-38Al-3.5Cu-1.2Mg/SiCp composite under different stabilization treatments. Int J Miner Metall Mater 29, 1270–1279 (2022). https://doi.org/10.1007/s12613-020-2217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2217-7

Keywords

Navigation