Log in

The Recrystallization Behavior in Ultrafine-Grained Structure Steel Fabricated by Cold Rolling and Annealing

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A simple process of 50% cold-rolled and annealed at different temperatures and times to obtain ultrafine-grained structured low-carbon steel with superior mechanical properties is utilized in this investigation. The microstructure evolves from bulky austenite to lathy martensite and then ultrafine ferrite grain with nanocarbide particles. Recovery occurs in the specimen annealed at about \(500\,{^{\circ }}\)C and 30 min, while recrystallization happens in the specimen annealed at \(550\,{^{\circ }}\)C and 30 min. The optimal balance between the tensile strength (867 MPa) and elongation (16.7%) is obtained in the specimen annealed at \(550\,{^{\circ }}\)C and 30 min, in which the mean size of ferrite grains and nanocarbides is 330 and 55 nm, respectively. Moreover, the distribution of ferrite grain conforms to the Gaussian distribution. The recrystallization activation energy of low-carbon steel with ultrafine grain is calculated to be \(320,682\,\hbox {J}\, \hbox {mol}^{-1}\) based on the Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, R.; Ponge, D.; Raabe, D.; Speer, J.G.; Matlock, D.K.: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Metall. Mater. Trans. A. 441, 1–17 (2006)

    Google Scholar 

  2. Li, X.; **g, T.F.; Lu, M.M.; Zhang, J.W.: Microstructure and mechanical properties of ultrafine lath-shaped low carbon steel. J. Mater. Eng. Perform. 21, 1496–1499 (2012)

    Article  Google Scholar 

  3. Sauvage, X.; Lefebvre, W.; Genevois, C.; Ohaakib, S.; Hono, K.: Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation. Scr. Mater. 60, 1056–1061 (2009)

    Article  Google Scholar 

  4. Tsuji, N.; Ueji, R.; Minamino, Y.; Saito, Y.: A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scr. Mater. 46, 305–310 (2002)

    Article  Google Scholar 

  5. Tsuji, N.; Ito, Y.; Saito, Y.; Minamino, Y.: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002)

    Article  Google Scholar 

  6. Tsuji, N.; Saito, Y.; Ito, Y.; Utsunomiya, H.; Sakai, T.: Ultra-fine grained ferrous and aluminum alloys produced by accumulative roll-bonding. In: Mishra, R.S. (ed.) The Minerals, Metals & Materials Society (TMS), pp. 207–218. Warrendale (2000)

  7. Ito, Y.; Tsuji, N.; Saito, Y.; Utsunomiya, H.; Sakai, T.: Change in microstructure and mechanical properties of ultra-fine grained aluminum during annealing. J. Jpn. Inst. Met. 64, 429–437 (2002)

    Article  Google Scholar 

  8. Tsuji, N.; Ueji, R.; Saito, Y.: Ultra-fine grains in ultra low carbon IF steel highly strained by ARB. Mater. Jpn. 39, 961 (2000). (in Japanese)

    Article  Google Scholar 

  9. Wang, B.F.; Sun, J.Y.; Zou, J.D.; Vincent, S.; Li, Juan: Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing. J. Cent. South Univ. 22, 3698–3704 (2015)

    Article  Google Scholar 

  10. Valiev, R.Z.; Ivanisenko, Y.; Rauch, E.F.; Baudelet, B.: Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J. Mater. Sci. 47, 7789–7795 (2012)

    Article  Google Scholar 

  11. Matsybara, K.; Miyahara, Y.; Horita, Z.; Langdon, T.G.: Develo** superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 51, 3073–3084 (2003)

    Article  Google Scholar 

  12. Shin, D.H.; Kim, B.C.; Park, K.; Kim, Y.S.: Microstructure evolution in a commercial low carbon steel by equal channel angular pressing. Acta Mater. 48, 2247–2255 (2000)

    Article  Google Scholar 

  13. Sabbaghianrad, S.; Kawasaki, M.; Langdon, T.G.: Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J. Mater. Sci. 47, 7789–7795 (2012)

    Article  Google Scholar 

  14. Dobatkin, S.V.; Rybalchenko, O.V.; Enikeev, N.A.; Tokar, A.A.; Abramova, M.M.: Formation of fully austenitic ultrafine-grained high strength state in metastable Cr-Ni-Ti stainless steel by severe plastic deformation. Mater. Lett. 166, 276–279 (2016)

  15. Takaki, S.; Kawasaki, K.; Kimura, Y.: Ultrafine grained materials. In: Mishra, R. S. (eds.) The Minerals, Metals & Materials Society (TMS), pp. 247–55. Warrendale (2000)

  16. Belyakov, A.; Sakika, Y.; Hara, T.; Kimura, Y.; Tsuzaki, K.: Annealing behavior of submicrocrystalline oxide-bearing iron produced by mechanical alloying. Metall. Mater. Trans. A 34, 131–138 (2003)

    Article  Google Scholar 

  17. Okitsu, Y.; Takatab, N.; Tsuji, N.: A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scr. Mater. 60, 76–79 (2009)

    Article  Google Scholar 

  18. Sadeghpour, S.; Kermanpur, A.; Najafizadeh, A.: Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Metall. Mater. Trans. A 584, 177–183 (2013)

    Google Scholar 

  19. Ma, Y.Q.; **, J.E.; Lee, Y.K.: A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scr. Mater. 52, 1311–1315 (2005)

    Article  Google Scholar 

  20. Alizamini, A.; Militzer, M.; Poole, W.J.: A novel technique for develo** bimodal grain size distributions in low carbon steels. Scr. Mater. 57, 1065–1068 (2007)

    Article  Google Scholar 

  21. Wang, T.S.; Zhang, F.C.; Zhang, M.; Lvb, B.: A novel process to obtain ultrafine-grained low carbon steel with bimodal grain size distribution for potentially improving ductility. Metall. Mater. Trans. A. 485, 456–460 (2008)

    Google Scholar 

  22. Morrison, W.B.: The effects of grain size on the stress-strain relationship in low carbon steel. Trans. ASM 59, 824–846 (1966)

    Google Scholar 

  23. Ueji, R.; Tsuji, N.; Minamino, Y.; Koizumi, Y.: Ultragrain refinement of plain low carbon steel by coldrolling and annealing of martensite. Acta Mater. 50, 4177–4189 (2002)

    Article  Google Scholar 

  24. Hosseini, S.M.; Alishahi, M.; Najafizadeh, A.; Kermanpur, A.: The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing. Mater. Lett. 74, 206–208 (2012)

    Article  Google Scholar 

  25. Tsuji, N.; Maki, T.: Enhanced structural refinement by combining phase transformation and plastic deformation in steels. Scr. Mater. 60, 1044–1049 (2009)

    Article  Google Scholar 

  26. Bao, Y.Z.; Adachi, Y.; Toomine, Y.; Xu, P.G.; Suzuki, T.; Tomota, Y.: Dynamic recrystallization by rapid heating followed by compression for a 17Ni–0.2C martensite steel. Scr. Mater. 53, 1471–1476 (2005)

    Article  Google Scholar 

  27. Hazra, S.S.; Pereloma, E.V.; Gazder, A.A.: Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel. Acta Mater. 59, 4015–4029 (2011)

    Article  Google Scholar 

  28. Nayaka, S.H.; Chaudhari, G.P.; Daniel, B.S.S.: Grain growth kinetics of accumulative roll bonded AZ61 alloy. Adv. Mater. Res. 585, 387–391 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Xu, G., Tian, Jy. et al. The Recrystallization Behavior in Ultrafine-Grained Structure Steel Fabricated by Cold Rolling and Annealing. Arab J Sci Eng 42, 4771–4777 (2017). https://doi.org/10.1007/s13369-017-2633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2633-9

Keywords

Navigation