Log in

Investigation on mechanical and wear performance of friction stir processed on GMAW cladded AA5083/ER4043

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Friction stir process has been implemented on GMAW cladded AA5083/ER4043. The cladded surface structure exhibits flaws and imperfections that have been mitigated through the implementation of friction stir processing. The surface modification is assessed through the examination of its microstructure, mechanical properties, and wear characteristics, in accordance with the guidelines set by the American Society for Testing and Materials. The parameters associated with the FSP technique have a pivotal influence in determining the ultimate characteristics of the changed surface. The study incorporated three distinct values for the rotating speed, traversal speed, and number of passes. The experimental design was based on the utilization of a Design of Experiments L9 orthogonal array. The Taguchi technique was employed to identify the optimal values of parameters for several responses, including ultimate tensile strength, percentage elongation, microhardness, erosion rate, and grain size. The ultimate tensile strength, percentage elongation, and microhardness of processed GMAW cladded AA5083/ER4043 were reported to be 161.11 MPa, 35.88%, and 84.86 HV, respectively. The grain size and erosion wear of the GMAW cladded AA5083/ER4043 were reduced to 0.7 gm/min * 10–3 and 38 µm, respectively. The investigation conducted using an integrated optical microscope highlights the significance of the friction stir process in determining the ultimate microstructure of the processed sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data available in this manuscript is entirely from the experimental observations and no data has been taken from different sources.

References

  1. Borba, N.Z., Kötter, B., Fiedler, B., dos Santos, J.F., Amancio-Filho, S.T.: Mechanical integrity of friction-riveted joints for aircraft applications. Compos. Struct. 232, 111542 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2019.111542

    Article  Google Scholar 

  2. Kumar, P.V., Reddy, G.M., Rao, K.S.: Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone—effect of post weld heat treatment and addition of boron carbide. Def. Technol. 11(2), 166–173 (2015). https://doi.org/10.1016/j.dt.2015.01.002

    Article  Google Scholar 

  3. Budarapu, P.R., Sudhir Sastry, Y.B., Natarajan, R.: Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures. Front. Struct. Civ. Eng. 10, 394–408 (2016). https://doi.org/10.1007/S11709-016-0352-Z/METRICS

    Article  Google Scholar 

  4. Jaffery, H.A., et al.: Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J. Alloys Compd. 810, 151925 (2019). https://doi.org/10.1016/J.JALLCOM.2019.151925

    Article  Google Scholar 

  5. Aribo, S., Fakorede, A., Ige, O., Olubambi, P.: Erosion-corrosion behaviour of aluminum alloy 6063 hybrid composite. Wear 376–377, 608–614 (2017). https://doi.org/10.1016/J.WEAR.2017.01.034

    Article  Google Scholar 

  6. **e, S., et al.: Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni–Cr–Fe coating with nanostructure. Opt. Laser Technol. 99, 374–381 (2018). https://doi.org/10.1016/j.optlastec.2017.09.025

    Article  Google Scholar 

  7. Cai, Z., Liu, B., Zou, X., Cheng, H.M.: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536

    Article  Google Scholar 

  8. Kulkarni, A.P., Sargade, V.G.: Characterization and performance of AlTiN, AlTiCrN, TiN/TiAlN PVD coated carbide tools while turning SS 304. Mater. Manuf. Process. 30(6), 748–755 (2015). https://doi.org/10.1080/10426914.2014.984217

    Article  Google Scholar 

  9. Bhojak, V., Jain, J.K., Saxena, K.K., Singh, B., Mohammed, K.A.: Friction stir process: a comprehensive review on material and methodology. Indian J. Eng. Mater. Sci. 30(1), 45–64 (2023). https://doi.org/10.56042/IJEMS.V1I1.61877

    Article  Google Scholar 

  10. Bhojak, V., Jain, J. K., Singhal, T. S., Saxena, K. K., Buddhi, D., Prakash, C.: Influence of friction stir process on the MIG cladded AA 6063 to study the wear performance. Int. J. Interact. Des. Manuf., pp. 1–13, (2022), https://doi.org/10.1007/S12008-022-01067-W/FIGURES/12.

  11. Krishnaja, D., Cheepu, M., Venkateswarlu, D.: A review of research progress on dissimilar laser weld-brazing of automotive applications. IOP Conf. Ser. Mater. Sci. Eng. 330(1), 012073 (2018). https://doi.org/10.1088/1757-899X/330/1/012073

    Article  Google Scholar 

  12. Budarapu, P.R., Yb, S.S., Javvaji, B., Mahapatra, D.R.: Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front. Struct. Civ. Eng. 8(2), 151–159 (2014). https://doi.org/10.1007/S11709-014-0247-9/METRICS

    Article  Google Scholar 

  13. Kumar, G., Ravi, R., Kumar, A., Vashista, M., Zaheer, K.: Improving GMAW weld metal and HAZ properties through friction stir processing. Zavar. i zavarene Konstr. 65(3), 137–142 (2020). https://doi.org/10.5937/ZZK2003137K

    Article  Google Scholar 

  14. Unnikrishnan, R., et al.: Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater. Char. 93, 10–23 (2014). https://doi.org/10.1016/J.MATCHAR.2014.03.013

    Article  Google Scholar 

  15. Yadav, G.P.K., et al.: Exploring the potential of metal-cored filler wire in gas metal arc welding for ASME SA387-Gr11-Cl2 steel joints. J. Adhes. Sci. Technol. 10(1080/01694243), 2223367 (2023)

    Google Scholar 

  16. Bandhu, D., et al.: Influence of regulated metal deposition and gas metal arc welding on ASTM A387–11–2 steel plates: as-deposited inspection, microstructure, and mechanical properties. J. Mater. Eng. Perform. 32(3), 1025–1038 (2023). https://doi.org/10.1007/S11665-022-07185-6/FIGURES/13

    Article  Google Scholar 

  17. Mehdi, H., Mishra, R.S.: Study of the influence of friction stir processing on tungsten inert gas welding of different aluminum alloy. SN Appl. Sci. 1, 1–11 (2019). https://doi.org/10.1007/s42452-019-0712-0

    Article  Google Scholar 

  18. De Jesus, J.S., Loureiro, A., Costa, J.M., Ferreira, J.M.: Effect of tool geometry on friction stir processing and fatigue strength of MIG T welds on Al alloys. J. Mater. Process. Technol. 214(11), 2450–2460 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.012

    Article  Google Scholar 

  19. Mehdi, H., Mishra, R.S.: Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Def. Technol. 17(3), 715–727 (2021). https://doi.org/10.1016/J.DT.2020.04.014

    Article  Google Scholar 

  20. Mabuwa, S., Msomi, V.: Analysis of mechanical properties between submerged and normal multiple-pass friction stir processing of the FSWed dissimilar aluminium joints. Mater. Today Proc. 45, 5400–5404 (2021). https://doi.org/10.1016/j.matpr.2021.02.101

    Article  Google Scholar 

  21. Devireddy, K., Devuri, V., Cheepu, M., Kumar, B.K.: Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone. Int. J. Mech. Prod. Eng. Res. Dev. 8(1), 243–252 (2018). https://doi.org/10.24247/IJMPERDFEB201828

    Article  Google Scholar 

  22. Msomi, V., Mabuwa, S.: Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint. Adv. Ind. Manuf. Eng. 1, 100002 (2020). https://doi.org/10.1016/j.aime.2020.100002

    Article  Google Scholar 

  23. Mehdi, H., Mishra, R.S.: Microstructure and mechanical characterization of tungsten inert gas-welded joint of AA6061 and AA7075 by friction stir processing. J. Mater. Des. Appl. 235(11), 2531–2546 (2021). https://doi.org/10.1177/14644207211007882

    Article  Google Scholar 

  24. Mehdi, H., Mishra, R.S.: Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans. Indian Inst. Met. 73(7), 1773–1788 (2020). https://doi.org/10.1007/S12666-020-01994-W/FIGURES/11

    Article  Google Scholar 

  25. Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R. Rep. 50(1–2), 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  26. Singhal, T.S., et al.: Microstructure and mechanical properties of GMAW cladded AA 6063 using friction stir processing as a post-processing technique. Adv. Mater. Process. Technol. (2023). https://doi.org/10.1080/2374068X.2023.2216420

    Article  Google Scholar 

  27. D. N. V. S. L. S. Indira et al.: Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. (2022) https://doi.org/10.1155/2022/7799812

  28. Numan, A., et al.: Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment. J. Hazard. Mater. 409, 124493 (2021). https://doi.org/10.1016/J.JHAZMAT.2020.124493

    Article  Google Scholar 

  29. Jayanthi, N., Babu, B.V., Rao, N.S.: Survey on clinical prediction models for diabetes prediction. J. Big Data 4(1), 1–15 (2017). https://doi.org/10.1186/S40537-017-0082-7/TABLES/7

    Article  Google Scholar 

  30. Dhanalaxmi, B., Naidu, G.A., Anuradha, K.: Adaptive PSO based association rule mining technique for software defect classification using ANN. Procedia Comput. Sci. 46, 432–442 (2015). https://doi.org/10.1016/J.PROCS.2015.02.041

    Article  Google Scholar 

  31. Kota, V.R., Bhukya, M.N.: A novel global MPP tracking scheme based on shading pattern identification using artificial neural networks for photovoltaic power generation during partial shaded condition. IET Renew. Power Gener. 13(10), 1647–1659 (2019). https://doi.org/10.1049/IET-RPG.2018.5142

    Article  Google Scholar 

  32. Mehdi, H., Mishra, R.S.: An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+FSP welding using RSM. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1829952

    Article  Google Scholar 

  33. Bhojak, V., Jain, J.K., Singhal, T.S., Saxena, K.K., Buddhi, D., Prakash, C.: Influence of friction stir process on the MIG cladded AA 6063 to study the wear performance. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/S12008-022-01067-W

    Article  Google Scholar 

  34. Bandhu, D., Abhishek, K.: Assessment of weld bead geometry in modified shortcircuiting gas metal arc welding process for low alloy steel. Mater. Manuf. Process. 36(12), 1384–1402 (2021). https://doi.org/10.1080/10426914.2021.1906897

    Article  Google Scholar 

  35. Bandhu, D., Kumari, S., Prajapati, V., Saxena, K.K., Abhishek, K.: Experimental investigation and optimization of RMDTM welding parameters for ASTM A387 grade 11 steel. Mater. Manuf. Process. 36(13), 1524–1534 (2021). https://doi.org/10.1080/10426914.2020.1854472

    Article  Google Scholar 

  36. Bhardwaj, A.R., Vaidya, A.M., Meshram, P.D., Bandhu, D.: Machining behavior investigation of aluminium metal matrix composite reinforced with TiC particulates. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/S12008-023-01378-6/TABLES/13

    Article  Google Scholar 

  37. Goud, J.S., et al.: Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Stud. Therm. Eng. 35, 102113 (2022). https://doi.org/10.1016/J.CSITE.2022.102113

    Article  Google Scholar 

  38. “G76 Standard Test Method for Conducting Erosion Tests by Solid Particle Im**ement Using Gas Jets.” https://www.astm.org/g0076-18.html (Accessed Oct. 28, 2023)

  39. Bhojak, V., Lade, J., Jain, J.K., Patnaik, A., Saxena, K.K.: Investigation of annealing on CR-2 grade steel using Taguchi and Taguchi based gray relational analysis. Adv. Mater. Process. Technol. 8(sup4), 2231–2246 (2022). https://doi.org/10.1080/2374068X.2022.2037878

    Article  Google Scholar 

  40. Pon, V.D., Wilson, K.J., Hariprasad, K., Ganesh, V., Ali, H.E., Algarni, H., Yahia, I.S.: Enhancement of optoelectronic properties of ZnO thin films by Al do** for photodetector applications. Superlattices Microstruct. 151, 106790 (2021). https://doi.org/10.1016/J.SPMI.2020.106790

    Article  Google Scholar 

  41. SudhirSastry, Y.B., Krishna, Y., Budarapu, P.R.: Parametric studies on buckling of thin walled channel beams. Comput. Mater. Sci. 96, 416–424 (2015). https://doi.org/10.1016/J.COMMATSCI.2014.07.058

    Article  Google Scholar 

  42. Yadav, S., Sharma, P., Yamasani, P., Minaev, S., Kumar, S.: A prototype micro-thermoelectric power generator for micro- electromechanical systems. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4870260/24501

    Article  Google Scholar 

  43. Liu, J., Yan, H., Li, Z., Zhang, P., Yu, Z., Lu, Q.: Microstructure and properties of Ni-based self-lubricating coatings by laser cladding/friction stir processing. Optik (Stuttg) 241, 166143 (2021). https://doi.org/10.1016/j.ijleo.2020.166143

    Article  Google Scholar 

  44. Korpi, A.G., et al.: Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Mater. Res. Express 6(8), 086463 (2019). https://doi.org/10.1088/2053-1591/AB26BE

    Article  Google Scholar 

  45. Chanakyan, C., et al.: Friction stir processing (FSP) of numerical study based on design of experiment-review. Mater. Today Proc. 27, 748–751 (2020). https://doi.org/10.1016/J.MATPR.2019.12.035

    Article  Google Scholar 

  46. Kandasamy, S., Rathinasamy, P., Nagarajan, N., Karumalai, D., Thangamuthu, M., Palaniappan, M.: Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by taguchi optimization approach. J. Adhes. Sci. Technol. 36(6), 584–605 (2022). https://doi.org/10.1080/01694243.2021.1929018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **esh Kumar Jain.

Ethics declarations

Conflict of interest

There are no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareek, A., Jain, J.K., Raghavender, V. et al. Investigation on mechanical and wear performance of friction stir processed on GMAW cladded AA5083/ER4043. Int J Interact Des Manuf 18, 1401–1414 (2024). https://doi.org/10.1007/s12008-023-01713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01713-x

Keywords

Navigation