Log in

Influence of friction stir process on the MIG cladded AA 6063 to study the wear performance

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Aluminum metal significantly used in industries due to lower density and high strength-to-weight ratio. The surface properties of any structural component are important in terms of performance and life span. The application of aluminum alloy for surface components concerning when it comes to wear properties. The surface modification approaches used for improvement of the aluminum alloy surface. In this investigation surface modification approach cladding and friction stir process have been examined by erosion wear analysis. The AA 6063 and ER 4043 filler has been studied with different processing parameters of cladding process and friction stir process. The erosion rate for base material, cladding sample, and FSP are 1.266 × 10–3 gm/min, 0.785 × 10–3 gm/min, and 0.4 × 10–3 gm/min respectively (average value from experimentation). The erosion wear for the cladding and friction stir process reduced by 37.99% and 68.01%. The reduction in the erosion wear can be relate with improvement in micro-hardness of the sample, which analyzed by micro-hardness test. The post processing of the cladding sample performed by FSP, which improved the erosion rate and micro-hardness respectively. The value of erosion rate 0.4962 × 10–3 gm/min observed after post processing. The erosion wear reduced by 61.33% from the base material after post processing. The ANN model is also prepared for the prediction of erosion rate for cladding process. The structure of model was 3-3-3-1, where one input layer, two hidden layers and one output layer selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Fadhalah, K.J., Almazrouee, A.I., Aloraier, A.S.: Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.07.062

    Article  Google Scholar 

  2. Aribo, S., Fakorede, A., Ige, O., Olubambi, P.: Erosion-corrosion behaviour of aluminum alloy 6063 hybrid composite. Wear (2017). https://doi.org/10.1016/J.WEAR.2017.01.034

    Article  Google Scholar 

  3. Selvaraj, S.K., Srinivasan, K., Deshmukh, J., Agrawal, D., Mungilwar, S., Jagtap, R., Hu, Y.C.: Performance comparison of advanced ceramic cladding approaches via solid-state and traditional welding processes: a review. Materials (Basel). (2020). https://doi.org/10.3390/ma13245805

    Article  Google Scholar 

  4. Cai, Z., Liu, B., Zou, X., Cheng, H.M.: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.7b00536

    Article  Google Scholar 

  5. Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., Gudmundsson, J.T.: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films (2006). https://doi.org/10.1016/J.TSF.2006.03.033

    Article  Google Scholar 

  6. Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Reports (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  7. Mahto, M.K., Kumar, A., Raja, A.R., Vashista, M., Yusufzai, M.Z.K.: Friction stir cladding of copper on aluminium substrate. CIRP J. Manuf. Sci. Technol. (2022). https://doi.org/10.1016/J.CIRPJ.2021.10.004

    Article  Google Scholar 

  8. Bararpour, S.M., Jamshidi Aval, H., Jamaati, R.: Cellular automaton modeling of dynamic recrystallization in Al-Mg alloy coating fabricated using the friction surfacing process. Surf. Coatings Technol. (2021). https://doi.org/10.1016/j.surfcoat.2020.126784

    Article  Google Scholar 

  9. Hasani, B.M., Hedaiatmofidi, H., Zarebidaki, A.: Effect of friction stir process on the microstructure and corrosion behavior of AZ91 Mg alloy. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124672

    Article  Google Scholar 

  10. Kaushik, A., Singh, V., Choudhury, B., Ashutosh, S., Chandrasekaran, M.: Experimental investigation on cladding with metal cored wire using GMAW process and parametric optimization. Eng. Res. Express (2021). https://doi.org/10.1088/2631-8695/AC372D

    Article  Google Scholar 

  11. Mehdi, H., Mishra, R.S.: Study of the influence of friction stir processing on tungsten inert gas welding of different aluminum alloy. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0712-0

    Article  Google Scholar 

  12. Li, W., Wu, D., Hu, K., Xu, Y., Yang, X., Zhang, Y.: A comparative study on the employment of heat treatment, electric pulse processing and friction stir processing to enhance mechanical properties of cold-spray-additive-manufactured copper. Surf. Coatings Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.126887

    Article  Google Scholar 

  13. Fuller, C.B., Mahoney, M.W.: The effect of friction stir processing on 5083–H321/5356 Al arc welds: Microstructural and mechanical analysis. Metall Mater. Trans. A Phys. Metall. Mater. Sci. (2006). https://doi.org/10.1007/s11661-006-1055-1

    Article  Google Scholar 

  14. Mehdi, H., Mishra, R.S.: Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Def. Technol. (2021). https://doi.org/10.1016/J.DT.2020.04.014

    Article  Google Scholar 

  15. Yamamoto, H., Danno, Y., Ito, K., Mikami, Y., Fujii, H.: Weld toe modification using spherical-tip WC tool FSP in fatigue strength improvement of high-strength low-alloy steel joints. Mater. Des. (2018). https://doi.org/10.1016/J.MATDES.2018.10.036

    Article  Google Scholar 

  16. Borrego, L.P., Costa, J.D., Jesus, J.S., Loureiro, A.R., Ferreira, J.M.: Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds. Theor. Appl. Fract. Mech. (2014). https://doi.org/10.1016/J.TAFMEC.2014.02.002

    Article  Google Scholar 

  17. Prasad Rao, K., Janaki Ram, G.D., Stucker, B.E.: Effect of friction stir processing on corrosion resistance of aluminum–copper alloy gas tungsten arc welds. Mater. Des. (2010). https://doi.org/10.1016/J.MATDES.2009.09.029

    Article  Google Scholar 

  18. Costa, J.D.M., Jesus, J.S., Loureiro, A., Ferreira, J.A.M., Borrego, L.P.: Fatigue life improvement of mig welded aluminium T-joints by friction stir processing. Int. J. Fatigue (2014). https://doi.org/10.1016/J.IJFATIGUE.2013.11.004

    Article  Google Scholar 

  19. Xue, P., Wang, B.B., Chen, F.F., Wang, W.G., **ao, B.L., Ma, Z.Y.: Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure. Mater. Charact. (2016). https://doi.org/10.1016/j.matchar.2016.10.009

    Article  Google Scholar 

  20. da Silva, J., Costa, J.M., Loureiro, A., Ferreira, J.M.: Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing. Mater. Des. (2013). https://doi.org/10.1016/J.MATDES.2013.04.026

    Article  Google Scholar 

  21. Shamanian, M., Mostaan, H., Safari, M., Szpunar, J.A.: Friction stir modification of GTA 7075–T6 Al alloy weld joints: EBSD study and microstructural evolutions. Arch. Civ. Mech. Eng. (2017). https://doi.org/10.1016/J.ACME.2017.01.002

    Article  Google Scholar 

  22. Borchers, T.E., Seid, A., Babu, S.S., Shafer, P., Zhang, W.: Effect of filler metal and post-weld friction stir processing on stress corrosion cracking susceptibility of Al–Zn–Mg arc welds. Sci. Technol. Weld. Join. (2015). https://doi.org/10.1179/1362171814Y.0000000273

    Article  Google Scholar 

  23. Abbasi, M., Givi, M., Bagheri, B.: New method to enhance the mechanical characteristics of Al-5052 alloy weldment produced by tungsten inert gas. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2020). https://doi.org/10.1177/0954405420929777

    Article  Google Scholar 

  24. Aliakbari, S., Ketabchi, M., Mirsalehi, S.E.: Through-thickness friction stir processing; a low-cost technique for fusion welds repair and modification in AA6061 alloy. J. Manuf. Process. (2018). https://doi.org/10.1016/j.jmapro.2018.08.006

    Article  Google Scholar 

  25. Bharti, A., Tripathi, H.: Enhancement of fatigue life of TIG-welded joint by friction stir processing. Renew. Energy Innov. Technol. (2019). https://doi.org/10.1007/978-981-13-2116-0

    Article  Google Scholar 

  26. Xu, N., Bao, Y.: Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling. Mater. Sci. Eng. A (2016). https://doi.org/10.1016/J.MSEA.2016.01.009

    Article  Google Scholar 

  27. Mehdi, H., Mishra, R.S.: Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG+FSP welding approach. J. Adv. Join. Process. (2020). https://doi.org/10.1016/J.JAJP.2020.100003

    Article  Google Scholar 

  28. Mehdi, H., Mishra, R.S.: Effect of friction stir processing on microstructure and mechanical properties of TIG welded joint of AA6061 and AA7075. Metallogr. Microstruct. Anal. (2020). https://doi.org/10.1007/S13632-020-00640-7/FIGURES/15

    Article  Google Scholar 

  29. Mehdi, H., Mishra, R.S.: Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans. Indian Inst. Met. (2020). https://doi.org/10.1007/S12666-020-01994-W/FIGURES/11

    Article  Google Scholar 

  30. Mehdi, H., Mishra, R.S.: An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+FSP welding using RSM. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1829952

    Article  Google Scholar 

  31. Raja, A.R., Gupta, S.K., Vashista, M., Yusufzai, M.Z.K.: Material characterization of friction stir welded IS-2062 steel plate by hysteresis loop analysis. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/AB45C1

    Article  Google Scholar 

  32. Ali, L.F., Kuppuswamy, N., Soundararajan, R., Ramkumar, K.R., Sivasankaran, S.: Microstructural evolutions and mechanical properties enhancement of AA 6063 alloy reinforced with Tungsten (W) nanoparticles processed by friction stir processing. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2021.110903

    Article  Google Scholar 

  33. Anaman, S.Y., Ansah, S., Cho, H.H., Jo, M.G., Suh, J.Y., Kang, M., Lee, J.S., Hong, S.T., Han, H.N.: An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy. J. Mater. Sci. Technol. (2021). https://doi.org/10.1016/j.jmst.2021.01.043

    Article  Google Scholar 

  34. Dinaharan, I., Zhang, S., Chen, G., Shi, Q.: Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing. J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2020.09.026

    Article  Google Scholar 

  35. Ali Anshari, M.A., Imam, M., Khan Yusufzai, M.Z., Chinthapenta, V., Mishra, R.: Stir zone anisotropic work hardening behavior in friction stir processed EN8 medium carbon steel. Mater. Sci. Eng. A (2021). https://doi.org/10.1016/j.msea.2020.140582

    Article  Google Scholar 

  36. Grewal, H.S., Arora, H.S., Singh, H., Agrawal, A.: Surface modification of hydroturbine steel using friction stir processing. Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2013.01.006

    Article  Google Scholar 

  37. Kandasamy, S., Rathinasamy, P., Nagarajan, N., Karumalai, D., Thangamuthu, M., Palaniappan, M.: Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by taguchi optimization approach. J. Adhes. Sci. Technol. (2022). https://doi.org/10.1080/01694243.2021.1929018

    Article  Google Scholar 

  38. Hu, J., Tsai, H.L.: Heat and mass transfer in gas metal arc welding. Part II Metal. Int. J. Heat Mass Transf. (2007). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2006.08.026

    Article  Google Scholar 

  39. Hu, J., Tsai, H.L.: Heat and mass transfer in gas metal arc welding. Part I: Arc Int. J. Heat Mass Transf. (2007). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2006.08.025

    Article  Google Scholar 

  40. Singhal, T.S., Jain, J.K.: GMAW cladding on metals to impart anti-corrosiveness: machine, processes and materials. Mater. Today Proc. (2020). https://doi.org/10.1016/J.MATPR.2020.02.518

    Article  Google Scholar 

  41. Ibrahim, I.A., Mohamat, S.A., Amir, A., Ghalib, A.: The effect of gas metal arc welding (GMAW) processes on different welding parameters. Procedia Eng. (2012). https://doi.org/10.1016/J.PROENG.2012.07.342

    Article  Google Scholar 

  42. Moustafa, E.B., Melaibari, A., Basha, M.: Wear and microhardness behaviors of AA7075/SiC-BN hybrid nanocomposite surfaces fabricated by friction stir processing. Ceram. Int. (2020). https://doi.org/10.1016/J.CERAMINT.2020.03.274

    Article  Google Scholar 

  43. Kiragi, V.R., Patnaik, A.: Erosive wear behaviour of aluminium alloys: a comparison between slurry and dry erosion. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/AB1AEE

    Article  Google Scholar 

  44. Malik, J., Toor, I.H., Ahmed, W.H., Gasem, Z.M., Habib, M.A., Ben-Mansour, R., Badr, H.M.: Evaluating the effect of hardness on erosion characteristics of aluminum and steels. J. Mater. Eng. Perform. (2014). https://doi.org/10.1007/s11665-014-1004-x

    Article  Google Scholar 

  45. Longalayuk, M., Ruskandi, C., Setiamarga, B.H.: Air jet erosion study on stir casted metal matrix composite aluminum-SiC. In: IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/547/1/012033 (2019)

  46. Suryanarayana, R.C., Hiriyannaiah, A., Gnanamurthy, P.R., Bharadwaj, A.: Air jet erosion wear behaviour of Al6061-carbon fibre rod composites. Tribol. Online (2015). https://doi.org/10.2474/trol.10.27

    Article  Google Scholar 

  47. Erdoğan, A.A., Feyzullahoğlu, E., Fidan, S., Sinmazçelik, T.: Investigation of erosive wear behaviors of AA6082-T6 aluminum alloy. J. Mater. Des. Appl. (2020). https://doi.org/10.1177/1464420719899686

    Article  Google Scholar 

  48. Kumar, S., Manani, S., Nikunj, P., Pradhan, A.K.: Synthesis and air jet erosion wear behavior of aluminum – Al3Ti In-Situ composite. Mater. Today Proc. (2020). https://doi.org/10.1016/J.MATPR.2020.05.701

    Article  Google Scholar 

  49. Dinaharan, I., Palanivel, R., Murugan, N., Laubscher, R.F.: Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-05-2019-0102/FULL/PDF

    Article  Google Scholar 

  50. Bhojak, V., Lade, J., Jain, J.K., Patnaik, A., Saxena, K.K.: Investigation of annealing on CR-2 grade steel using Taguchi and Taguchi based gray relational analysis. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2037878

    Article  Google Scholar 

  51. Salah, A.N., Mabua, S., Mehdi, H., Msomi, V., Kaddami, M., Mohapatra, P.: Effect of multipass FSP on Si-rich TIG welded joint of dissimilar aluminum alloys AA8011-H14 and AA5083-H321: EBSD and microstructural evolutions. SILICON (2022). https://doi.org/10.1007/S12633-022-01717-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **esh Kumar Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhojak, V., Jain, J.K., Singhal, T.S. et al. Influence of friction stir process on the MIG cladded AA 6063 to study the wear performance. Int J Interact Des Manuf 18, 1317–1329 (2024). https://doi.org/10.1007/s12008-022-01067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01067-w

Keywords

Navigation