Log in

Diagnosis and Detection of Congenital Diseases in New-Borns or Fetuses Using Artificial Intelligence Techniques: A Systematic Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Artificial intelligence, including machine learning and deep learning, play an essential role in the medical industry for predicting various diseases. One such disease or disorder is a congenital disease that affects the newborn infant or unborn foetus by different viruses carried by the mother and passed on to the baby either during the time of pregnancy or delivery. Based on PRISMA guidelines, an extensive survey has been done to predict congenital diseases, including neonatal and postnatal. We have considered 115 articles related to the prediction of congenital diseases such as Zika virus, congenital heart disease, chromosome anomalies, sepsis, hypertension, cytomegalovirus, and many more using artificial intelligence published from 2008 to 2022 on different databases, journals, and conferences. In addition, the review also depicts the current work done by several researchers in the field of congenital disease prediction, along with their datasets and limitations. For complete work, we have designed four investigations and, in the end, explored solutions for the same. From the survey, it has been found that irrespective of various approaches used in the reported work, they can achieve predicted outcomes, but still, several problems need to be resolved. Thus, there is a need for more extensive research to deal with the challenges in the area of predicting various congenital diseases in the early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Waldorf KMA, McAdams RM (2013) Influence of infection during pregnancy on fetal development. Reproduction (Cambridge, England). https://doi.org/10.1530/REP-13-0232

    Article  Google Scholar 

  2. McAuley JB (2011) Congenital toxoplasmosis. J Pediat Infect Dis Soc. https://doi.org/10.1093/jpids/piu077

    Article  Google Scholar 

  3. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791. https://doi.org/10.1016/j.cell.2016.04.019

    Article  Google Scholar 

  4. https://www.atsu.edu/faculty/chamberlain/Website/lectures/lecture/congen.htm

  5. Tejera E, Areias MJ, Rodrigues A, Ramõa A, Nieto-Villar JM, Rebelo I (2011) Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. J Matern Fetal Neonatal Med. https://doi.org/10.3109/14767058.2010.545916

    Article  Google Scholar 

  6. WHO fact sheet on congenital anomalies, updated September 2016, Available at www.who.int/mediacentre/factsheets/fs370/en/, Accessed 5 Oct 2018

  7. Shahid N, Rappon T, Berta W (2019) Applications of artificial neural networks in health care organizational decision-making: a sco** review. PLoS ONE. https://doi.org/10.1371/journal.pone.0212356

    Article  Google Scholar 

  8. Fatima M, Pasha M (2017) Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl. https://doi.org/10.4236/jilsa.2017.91001

    Article  Google Scholar 

  9. Workowski KA, Bachmann LH, Chan PA, Johnston CM, et al. (2021) Sexually Transmitted Infections Treatment Guidelines. MMWR Recommendation Report, 181–187

  10. Workowski KA, Berman S (2010) Sexually transmitted diseases treatment guidelines. Morbidity and Mortality Weekly Report, 107–113

  11. Liu W, Yu Z, Raj B, Yi L, Zou X, Li M (2015) Efficient autism spectrum disorder prediction with eye movement: a machine learning framework. Int Conf Affect Comput Intell Interact (ACII). https://doi.org/10.1109/ACII.2015.7344638

    Article  Google Scholar 

  12. Marty FM, Ljungman P, Chemaly PF, Maertens J, Dadwal SS, Duarte RF, Haider S et al (2017) Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N Engl J Med. https://doi.org/10.1056/NEJMoa1706640

    Article  Google Scholar 

  13. Santis MD, Luca CD, Mappa I, Spagnuolo T et al (2012) Syphilis infection during pregnancy: fetal risks and clinical management. Infect Dis Obstert Gynecol. https://doi.org/10.1155/2012/430585

    Article  Google Scholar 

  14. Wu X, Long E, Lin H, Liu Y (2016) Prevalence and epidemiological characteristics of con-genital cataract: a systematic review and meta-analysis. Sci Rep. https://doi.org/10.1038/srep28564

    Article  Google Scholar 

  15. Veiga RV, Schuler-Faccini L, França GVA, Andrade RFS et al (2021) Classification algorithm for congenital Zika syndrome: characterizations, diagnosis and validation. Sci Rep. https://doi.org/10.1038/s41598-021-86361-5

    Article  Google Scholar 

  16. Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J et al (2013) Global prevalence of vision impairment and blindness: magnitude and temporal trends. Ophthalmology. https://doi.org/10.1016/j.ophtha.2013.05.025

    Article  Google Scholar 

  17. Taruscio D, Mantovani A, Carbone P, Barisic I, Bianchi F et al (2015) Primary prevention of congenital anomalies: recommendable, feasible and achievable. Public Health Genom. https://doi.org/10.1159/000379739

    Article  Google Scholar 

  18. Tejera E, Areias MJ, Rodrigues A, Ramoa A, Nieto-Villar JM, Rebelo I (2011) Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. J Matern Fetal Neonatal Med. https://doi.org/10.3109/14767058.2010.545916

    Article  Google Scholar 

  19. Jung KH, Choi J, Gong EJ, Lee JH, Choi KD et al (2019) Can endoscopists diferentiate cytomegalovirus esophagitis from herpes simplex virus esophagitis based on gross endoscopic fndings? Medicine. https://doi.org/10.1097/MD.0000000000015845

    Article  Google Scholar 

  20. Uchechi HO, Ifeyinwa OM, Asemota E, Okpokam D (2018) Seroprevalence of transfusion-transmissible infections (hbv, hcv, syphilis and hiv) among prospective blood donors in a tertiary health care facility in Calabar Nigeria; an eleven years evaluation. BMC Public Health. https://doi.org/10.1186/s12889-018-5555-x

    Article  Google Scholar 

  21. Lawton B, MacDonald EJ, Brown SA, Wilson L, Stanley J, Tait JD (2014) Preventability of severe acute maternal morbidity. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2013.12.032

    Article  Google Scholar 

  22. Huanga Y, Wanga H, Li T, Li C, Tanga J et al (2021) Comparison of detection strategies for screening and confirming congenital cytomegalovirus infection in newborns in a highly seroprevalent population: a mother-child cohort study. Lancet Region Health West Pacific. https://doi.org/10.1016/j.lanwpc.2021.100182

    Article  Google Scholar 

  23. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects-reviewing the evidence for causality. N Engl J Med. https://doi.org/10.1056/NEJMsr1604338

  24. Adachi KN, Saines KN, Klausner JD (2021) Chlamydia trachomatis screening and treatment in pregnancy to reduce adverse pregnancy and neonatal outcomes: a review. Front Public Health. https://doi.org/10.3389/fpubh.2021.531073

    Article  Google Scholar 

  25. Wallace J, Pitts M, Liu C, Lin V, Hajarizadeh B, Richmond J, Locarnini S (2017) More than a virus: a qualitative study of the social implications of hepatitis b infection in china. Int J Equity Health. https://doi.org/10.1186/s12939-017-0637-4

    Article  Google Scholar 

  26. Oliveira D, W. K. et al. (2016) Increase in reported prevalence of microcephaly in infants born to women living in areas with confrmed Zika virus transmission during the frst trimester of pregnancy-Brazil. Morbidity and Mortality Weekly Report. https://doi.org/10.15585/mmwr.mm6509e2

  27. Franca GVA, Faccini LS, Oliveira WK, Henriques CMP et al (2016) Congenital Zika virus syndrome in Brazil: a case series of the frst 1501 livebirths with complete investigation. Lancet. https://doi.org/10.1016/S0140-6736(16)30902-3

    Article  Google Scholar 

  28. Aragao MDFV, Linden VVD, Brainer-Lima AM et al (2016) Clinical features and neuroimaging (CT and MRI) fndings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ Clin Res. https://doi.org/10.1136/bmj.i1901

    Article  Google Scholar 

  29. Ciobanu A, Khan N, Syngelaki A, Akolekar R, Nicolaides KH (2019) Routine ultrasound at 32 vs 36 weeks’ gestation: prediction of small-for-gestational-age neonates. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.20258

    Article  Google Scholar 

  30. Gaccioli F, Aye ILMH, Sovio U, Charnock-Jones DS, Smith GCS (2018) Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2017.12.002

    Article  Google Scholar 

  31. Bahado-Singh RO, Yilmaz A, Bisgin H, Turkoglu O, Kumar P et al (2019) Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction. PLoS One. https://doi.org/10.1371/journal.pone.0214121

    Article  Google Scholar 

  32. Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L et al (2019) “Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS One. https://doi.org/10.1371/journal.pone.0212665

    Article  Google Scholar 

  33. Song W, Jung S, Baek H, Choi C, Jung Y, Yoo S (2020) Development of prediction model for the early detection of late-onset neonatal sepsis using machine learning. JMIR Med Inform. https://doi.org/10.2196/15965

    Article  Google Scholar 

  34. Quiros LC, Kommers D, Wolvers MK, Oosterwijk L, Arents N et al (2021) Prediction of late-onset sepsis in preterm infants using monitoring signals and machine learning. Crit Care Explor. https://doi.org/10.1097/CCE.0000000000000302

    Article  Google Scholar 

  35. Kopanitsa G, Metsker O, Paskoshev D, Greschischeva S (2021) Identification of risk factors and prediction of sepsis in pregnancy using machine learning methods. Procedia Comput Sci. https://doi.org/10.1016/j.procs.2021.10.040

    Article  Google Scholar 

  36. Hsu JF, Chang YF, Cheng HJ, Yang C, Lin CY, Chu SM et al (2021) Machine learning approaches to predict in-hospital mortality among neonates with clinically suspected sepsis in the neonatal intensive care unit. J Personal Medicien, MDPI. https://doi.org/10.3390/jpm11080695

    Article  Google Scholar 

  37. Li H, Luo M, Zheng J, Luo J, Zeng R, Feng N, Du Q, Fang J (2017) An artificial neural network prediction model of congenital heart disease based on risk factors. Medicine. https://doi.org/10.1097/MD.0000000000006090

    Article  Google Scholar 

  38. Yoon SA, Hong WH, Cho H (2020) Congenital heart disease diagnosed with echocardiogram in newborns with asymptomatic cardiac murmurs: a systematic review. BMC Pediator. https://doi.org/10.1186/s12887-020-02212-8

    Article  Google Scholar 

  39. Du Y, Huang S, Huang C, Maalla A, Lia H (2020) Recognition of child congenital heart disease using electrocardiogram based on residual of residual network. IEEE Int Conf Progress Inform Comput (PIC). https://doi.org/10.1109/pic50277.2020.9350802

    Article  Google Scholar 

  40. Meda JT, Mushiri T (2020) Predicting Congenital Heart Diseases Using Machine Learning. Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management, pp. 1716–1725.

  41. Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2021) An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat Med. https://doi.org/10.1038/s41591-021-01342-5

    Article  Google Scholar 

  42. Nurmaini S, Rachmatullah MN, Sapitri AI, Darmawahyuni A et al (2021) Deep learning-based computer-aided fetal echocardiography: application to heart standard view segmentation for congenital heart defects detection. Artif Intell-Based Appl Med Imag. https://doi.org/10.3390/s21238007

    Article  Google Scholar 

  43. Ammarah UE, Bukhari F, Idrees M, Iqbal W (2021) Predictive analysis of congenital heart defects prior to birth. Int Conf Robot Automat Ind (ICRAI). https://doi.org/10.1109/ICRAI54018.2021.9651436

    Article  Google Scholar 

  44. Truong VT, Nguyen BP, Nguyen-Vo TH, Mazur W, Chung ES et al (2022) Application of machine learning in screening for congenital heart diseases using fetal echocardiography. Int J Cardiovasc Imaging 38:1007–1015

    Article  Google Scholar 

  45. Qu Y, Deng X, Lin S, Han F, Chang HH, Ou Y, Nie Z et al (2022) Using innovative machine learning methods to screen and identify predictors of congenital heart diseases. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.797002

    Article  Google Scholar 

  46. Say L, Chou D, Gemmill A, Tunçalp O, Moller AB, Daniels J et al (2014) Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. https://doi.org/10.1016/S2214-109X(14)70227-X

    Article  Google Scholar 

  47. Abu-Raya B, Maertens K, Edwards KM, Omer SB, Englund JA, Flanagan KL (2020) Global perspectives on immunization during pregnancy and priorities for future research and development: an international consensus statement. Front Immunol. https://doi.org/10.3389/fimmu.2020.01282

    Article  Google Scholar 

  48. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP (2018) Machine learning in cardiovascular machine: are we there yet? Heart (Bristish Cardiac Society). https://doi.org/10.1136/heartjnl-2017-311198

    Article  Google Scholar 

  49. Arumugam K, Naved M, Shinde PP, Leiva-Chauca O, Huaman-Osorio A, Yanac TG (2021) Multiple disease prediction using machine learning algorithms. Materials Today Proc. https://doi.org/10.1016/j.matpr.2021.07.361

    Article  Google Scholar 

  50. Lin KH, Hu YJ (2018) Application of machine learning to immune disease prediction. Int J Eng Innov Technol. https://doi.org/10.1038/s41746-020-0229-3

    Article  Google Scholar 

  51. Li H, Luo M, Zheng J, Luo J, Zeng R, Feng N, Du Q, Fang J (2017) An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study. Medicine (Baltimore). https://doi.org/10.1097/MD.0000000000006090

    Article  Google Scholar 

  52. Haghpanahi M, Borkholder DA (2014) Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging. Physiol Meas. https://doi.org/10.1088/0967-3334/35/8/1591

    Article  Google Scholar 

  53. Abbasi H, Bennet L, Gunn AJ, Unsworth CP (2017) Robust wavelet stabilized “footprints of uncertainty” for fuzzy system classifiers to automatically detect sharp waves in the EEG after hypoxia ischemia. Int J Neural Syst. https://doi.org/10.1142/S0129065716500519

    Article  Google Scholar 

  54. Miao JH, Miao KH (2018) Cardiotocographic diagnosis of fetal health based on multiclass morphologic pattern predictions using deep learning classification. International Journal of Advanced Computer Science and Application. https://doi.org/10.14569/IJACSA.2018.090501

  55. Akbulut A, Ertugrul E, Topcu V (2018) Fetal health status prediction based on maternal clinical history using machine learning techniques. Computer Methods Progr Biomed. https://doi.org/10.1016/j.cmpb.2018.06.010

    Article  Google Scholar 

  56. Ng K, Ghoting A, Steinhubl SR, Stewart WF, Malin B, Sun J (2014) PARAMO: a PARAllel predictive modeling platform for healthcare analytic research using electronic health records. J Biomed Inform. https://doi.org/10.1016/j.jbi.2013.12.012

    Article  Google Scholar 

  57. Pisapia JM, Akbari H, Rozycki M, Goldstein H, Bakas S, Rathore S et al (2018) Use of fetal magnetic resonance image analysis and machine learning to predict the need for postnatal cerebrospinal fluid diversion in fetal ventriculomegaly. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2017.3993

    Article  Google Scholar 

  58. Feng B, Samuel DC, Hoskins W, Guo Y, Zhang Y, Tang J, Meng Z (2017) Down syndrome prediction/screening model based on deep learning and illumina genoty** array. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 347–352. https://doi.org/10.1109/BIBM.2017.8217674

  59. Neocleous AC, Nicolaides KH, Schizas CN (2018) Two-stage approach for risk estimation of fetal trisomy 21 and other aneuploidies using computational intelligence systems. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.17558

    Article  Google Scholar 

  60. Somasundaram D (2018) Machine learning approach for homolog chromosome Classification. Int J Imaging Syst Technol. https://doi.org/10.1002/ima.22287

    Article  Google Scholar 

  61. Neocleous AC, Nicolaides KH, Schizas CN (2017) Intelligent noninvasive diagnosis of aneuploidy: raw values and highly imbalanced dataset. IEEE J Biomed Health Informatics. https://doi.org/10.1109/JBHI.2016.2608859

    Article  Google Scholar 

  62. Qin Y, Wen J, Zheng H, Huang X, Yang J, Song N, Zhu YM, et al. (2019) Varifocal-net: a chromosome classification approach using deep convolutional networks. Computer vision and pattern recognition IEEE TMI for future publication. https://doi.org/10.1109/TMI.2019.2905841

  63. Jaganathan M, Gopal R, Kiruthika VR (2019) Modelling an effectual feature selection approach for predicting down syndrome using machine learning approaches. International Journal of Aquatic Science, pp. 1238–1249

  64. Al-Kharraz MS, Elrefaei LA, Fadel MA (2020) Automated system for chromosome karyoty** to recognize the most common numerical abnormalities using deep learning. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3019937

    Article  Google Scholar 

  65. Xu X, Wang L, Cheng X, Ke W, Jie S, Lin S, Lai M, Zhang L, Li Z (2022) Machine learning-based evaluation of application value of the USM combined with NIPT in the diagnosis of fetal chromosomal abnormalities. Math Biosci Eng. https://doi.org/10.3934/mbe.2022197

    Article  Google Scholar 

  66. Nimitha N, Abbiraamavallee S, Elakiya E, Harini J, Kotishree V (2022) Supervised chromosomal anomaly detection using VGG-16 CNN model. AIP Conf Proc. https://doi.org/10.1063/50072491

    Article  Google Scholar 

  67. Bhardwaj P, Bhandari G, Kumar Y, Gupta S (2022) An investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-022-09737-4

    Article  Google Scholar 

  68. Luo Y, Li Z, Guo H, Cao H, Song C, Guo X, Zhang Y (2017) Predicting congenital heart defects: a comparison of three data mining methods. PLoS ONE. https://doi.org/10.1371/journal.pone.0177811

    Article  Google Scholar 

  69. Gupta A, Koul A, Kumar Y (2022) Pancreatic Cancer Detection using Machine and Deep Learning Techniques. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), 2, 151–155. https://doi.org/10.1109/ICIPTM54933.2022.9754010

  70. Buscema M, Grossi E, Montanini L, Street ME (2015) Data mining of determinants of intrauterine growth retardation revisited using novel algorithms generating semantic maps and prototypical discriminating variable profiles. PLoS ONE. https://doi.org/10.1371/journal.pone.0126020

    Article  Google Scholar 

  71. Wosiak A, Zamecznik A, Jarosik KN (2016) Supervised and unsupervised machine learning for improved identification of intrauterine growth restriction types. Proceedings of the federated conference on computer science and information systems, https://doi.org/10.15439/2016F515

  72. Bahado-Singh RO, Yilmaz A, Bisgin H, Turkoglu O, Kumar P et al (2019) Artificial intelligence and the analysis of multiplatform metabolomics data for the detection of intrauterine growth restriction. Metabol Anal Intrauter Growth Restrict. https://doi.org/10.1371/journal.pone.0214121

    Article  Google Scholar 

  73. Sufriyana H, Wu YW, Su YCU (2020) Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort. JMIR Med Inform. https://doi.org/10.2196/15411

    Article  Google Scholar 

  74. Pini N, Lucchini M, Esposito G, Tagliaferri S, Campanile M et al (2021) A machine learning approach to monitor the emergence of late intrauterine growth restriction. Front Med Sci. https://doi.org/10.3389/frai.2021.622616

    Article  Google Scholar 

  75. Crockart IC, Brink LT, Plessis CD, Odendaal HJ (2021) Classification of intrauterine growth restriction at 34–38 weeks gestation with machine learning models. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2021.100533

    Article  Google Scholar 

  76. Teng LY, Mattar CNZ, Biswas A, Hoo WL, Saw SN (2022) Interpreting the role of nuchal fold for fetal growth restriction prediction using machine learning. Sci Rep. https://doi.org/10.1038/s41598-022-07883-0

    Article  Google Scholar 

  77. Aslam N, Khan IU, Aljishi RF, Alnamer ZM, Alzawad ZM et al (2022) Explainable computational intelligence model for antepartum fetal monitoring to predict the risk of IUGR. Defin Eng Govern Green Artif Intell. https://doi.org/10.3390/electronics11040593

    Article  Google Scholar 

  78. Gupta S, Kumar Y (2022) Cancer prognosis using artificial intelligence-based techniques. SN Comput Sci 3(1):1–8. https://doi.org/10.1007/s42979-021-00964-3

    Article  Google Scholar 

  79. Carnimeo L (2008) An Intelligent Analyzer for Supporting Diagnoses of Congenital CMV Infection. Advanced Intelligent Computing Theories and Applications With Aspects of Artificial Intelligence, Springer, pp. 1069–1076. https://doi.org/10.1007/978-3-540-85984-0_128

  80. Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence in medical image processing for airway diseases. Connected e-Health. Springer, Cham, pp 217–254

    Chapter  Google Scholar 

  81. Boger RA, Boger YS, Foster CB, Boger Z (2008) The use of artificial neural networks in prediction of congenital CMV outcome from sequence data. Bioinform Biol Insights. https://doi.org/10.4137/bbi.s764

    Article  Google Scholar 

  82. Tanimura K, Yamada H (2018) Potential biomarkers for predicting congenital cytomegalovirus infection. Int J Mol Sci. https://doi.org/10.3390/ijms19123760

    Article  Google Scholar 

  83. Rogers R, Saharia K, Chandorkar A, Weiss ZF, Vieira K, Koo S, Farmakiotis D (2020) Clinical experience with a novel assay measuring cytomegalovirus (CMV)-specific CD4+ and CD8+ T-cell immunity by flow cytometry and intracellular cytokine staining to predict clinically significant CMV events. BMC Infect Dis. https://doi.org/10.1186/s12879-020-4787-4

    Article  Google Scholar 

  84. Deepa K, Suganya S (2020) Multiple attribute feature extraction and high support vector classifier for identification of cytomegalovirus images. ICTACT journal on image and video processing. https://doi.org/10.21917/ijivp.2020.0324

    Article  Google Scholar 

  85. Hu Z, Tanga A, Singha J, Bhattacharyaa S, Butte AJ (2020) A robust and interpretable end-to-end deep learning model for cytometry data. National Center of Biotechnology Information. https://doi.org/10.1073/pnas.2003026117

    Article  Google Scholar 

  86. Lee JS, Yun J, Ham S, Park H, Lee H, Kim J, Byeon JS et al (2021) Machine learning approach for differentiating cytomegalovirus esophagitis from herpes simplex virus esophagitis. Sci Rep. https://doi.org/10.1038/s41598-020-78556-z

    Article  Google Scholar 

  87. Eisenberg L, Brossette C, Rauch J, Grandjean A, Ottinger H, Rissland J, Schwarz U, Graf N et al (2022) Time-dependent prediction of mortality and cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation using machine learning. MedRxiv. https://doi.org/10.1101/2021.09.14.21263446

    Article  Google Scholar 

  88. Jiang D, Hao M, Ding F, Fu J, Li M (2018) Map** the transmission risk of Zika virus using machine learning models. Acta Trop. https://doi.org/10.1016/j.actatropica.2018.06.021

    Article  Google Scholar 

  89. Mahalakshmi B, Suseendran G (2019) Prediction of zika virus by multilayer perceptron neural network (MLPNN) using cloud. International Journal of Recent Technology and Engineering (IJRTE). https://doi.org/10.35940/ijrte.B1041.0982S1119

    Article  Google Scholar 

  90. Lusk R, Zimmerman J, Maldeghem KV, Kim S, Roth NM, Lavinder J et al (2020) Exploratory analysis of machine learning approaches for surveillance of Zika-associated birth defects. Birth Defects Res. https://doi.org/10.1002/bdr2.1767

    Article  Google Scholar 

  91. Herry CL, Soares HMF, Faccini LS, Frasch MG (2021) Machine learning model on heart rate variability metrics identifies asymptomatic toddlers exposed to zika virus during pregnancy. Physiol Meas. https://doi.org/10.1088/1361-6579/ac010e

    Article  Google Scholar 

  92. Veiga RV, Faccini LS, França GVA et al (2021) Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation. Sci Rep. https://doi.org/10.1038/s41598-021-86361-5

    Article  Google Scholar 

  93. Dadheech P, Mehbodniya A, Tiwari S, Kumar S, Singh P, Gupta S (2022) Zika virus prediction using ai-driven technology and hybrid optimization algorithm in healthcare. J Healthcare Eng. https://doi.org/10.1155/2022/2793850

    Article  Google Scholar 

  94. Tejera E, Areias MJ, Rodrigues A, Ramõa A, Nieto-villar JM, Rebelo I (2011) Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification usingmaternal heart rate variability Indexes. J Matern Neonatal Med. https://doi.org/10.3109/14767058.2010.545916

    Article  Google Scholar 

  95. Moreira MWL, Rodrigues JLPC, Al-Muhtadi J, Korotaev VV, Albuquerque VHC (2018) Neuro-fuzzy model for HELLP syndrome prediction in mobile cloud computing environments. Concurrency Comput Pract Expert. https://doi.org/10.1002/cpe.4651

    Article  Google Scholar 

  96. Tahir M, Badriyah T, Syarif I (2018) Classification algorithms of maternal risk detection for preeclampsia with hypertension during pregnancy using particle swarm optimization. Emitter Int J Eng Technol. https://doi.org/10.24003/emitter.v6i2.287

    Article  Google Scholar 

  97. Bennett R, Mulla ZD, Parikh P, Hauspurg A, Razzaghi T (2022) An imbalance-aware deep neural network for early prediction of preeclampsia. PLoS ONE. https://doi.org/10.1371/journal.pone.0266042

    Article  Google Scholar 

  98. Kumar Y, Gupta S (2022) Deep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular edema, drusen and healthy eyes: an experimental review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-022-09807-7

    Article  Google Scholar 

  99. Kumar Y, Gupta S, Singla R, Hu YC (2022) A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Comput Methods Eng 29(4):2043–2070. https://doi.org/10.1007/s11831-021-09648-w

    Article  Google Scholar 

  100. Kumar Y, Koul A, Mahajan S (2022) A deep learning approaches and fastai text classification to predict 25 medical diseases from medical speech utterances, transcription and intent. Soft Comput 26(17):8253–8272. https://doi.org/10.1007/s00500-022-07261-y

    Article  Google Scholar 

  101. Kumar Y, Patel NP, Koul A, Gupta A (2022) Early Prediction of Neonatal Jaundice using Artificial Intelligence Techniques. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), 2, 222–226. https://doi.org/10.1109/ICIPTM54933.2022.9753884

  102. Kumar Y, Singla R (2022) Effectiveness of machine and deep learning in iot-enabled devices for healthcare system. In: Ghosh U, Chakraborty C, Garg L, Srivastava G (eds) Intelligent internet of things for healthcare and industry. Springer, Cham, pp 1–19

    Google Scholar 

  103. Zhong H, **ao J (2019) Retracted: enhancing health risk prediction with deep learning on big data and revised fusion node paradigm. Hindawi. https://doi.org/10.1155/2019/9757658

    Article  Google Scholar 

  104. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-019-1004-8

    Article  Google Scholar 

  105. Katarya R, Srinivas P (2020) Predicting heart disease at early stages using machine learning: A survey. In 2020 International Conference on electronics and sustainable communication systems (ICESC), pp. 302–305. https://doi.org/10.1109/ICESC48915.2020.9155586

  106. Sharma M, Swati, Vig L (2018) Automatic Chromosome Classification using Deep Attention Based Sequence Learning of Chromosome Bands. in 2018 International Joint Conference on Neural Networks (IJCNN), IEEE. https://doi.org/10.1109/IJCNN.2018.8489321

  107. Kohli PS, Arora S (2018) Application of machine learning in disease prediction. In 2018 4th International Conference on computing communication and automation (ICCCA), pp. 1–4. https://doi.org/10.1109/CCAA.2018.8777449

  108. Yuan FQ (2016) Critical issues of applying machine learning to condition monitoring for failure diagnosis. IEEE International Conference on industrial engineering and engineering management (IEEM). https://doi.org/10.1109/IEEM.2016.7798209

  109. Ismaeel S, Miri A, Chourishi D (2015) Using the extreme learning machine (elm) technique for heart disease diagnosis. IEEE Canada International humanitarian technology conference (IHTC2015). https://doi.org/10.1109/IHTC.2015.7238043

  110. Dengju Y, Yang J, Zhan X (2013) A novel method for disease prediction: Hybrid of random forest and multivariate adaptive regression splines. Journal of Computers (Finland). https://doi.org/10.4304/jcp.8.1.170-177

    Article  Google Scholar 

  111. Dessi A, Ottonello G, Fanos V (2012) Physiopathology of intrauterine growth retardation: from classic data to metabolomics. J Matern Fetal Neonatal Med. https://doi.org/10.3109/14767058.2012.714639

    Article  Google Scholar 

  112. Lakshmi BN, Indumathi TS, Ravi N (2015) Prediction based health monitoring in pregnant women. International Conference on Applied and Theoreti- cal Computing and Communication Technology (iCATccT), IEEE. https://doi.org/10.1109/ICATCCT.2015.7456954

  113. Zea-Vera A, Ochoa TJ (2015) Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr. https://doi.org/10.1093/tropej/fmu079

    Article  Google Scholar 

  114. Hou B, Khanal B, Alansary A, McDonagh S, Davidson A, Rutherford M, Hajnal JV et al (2018) 3-D reconstruction in canonical co-ordinate space from arbitrarily oriented 2-D images. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2018.2798801

    Article  Google Scholar 

  115. He F, Lin B, Mou K, ** L, Liu J (2021) A machine learning model for the prediction of down syndrome in second trimester antenatal screening. Clin Chim Acta. https://doi.org/10.1016/j.cca.2021.07.015

    Article  Google Scholar 

  116. Jamshidnezhad A, Hosseini SM, Mohammadi-Asl J, Mahmudi M (2021) An intelligent prenatal screening system for the prediction of Trisomy-21. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2021.100625

    Article  Google Scholar 

  117. Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P (2021) Prediction of heart disease using a combination of machine learning and deep learning. Comput Intell Neurosci. https://doi.org/10.1155/2021/8387680

    Article  Google Scholar 

  118. Rani S, Masood S (2020) Predicting congenital heart disease using machine learning techniques. J Discret Math Sci Cryptogr. https://doi.org/10.1080/09720529.2020.1721862

    Article  Google Scholar 

  119. Clifford GD, Silva I, Behar J, Moody GB (2017) Non-invasive fetal ECG analysis. Physiol Meas. https://doi.org/10.1088/0967-3334/35/8/1521

    Article  Google Scholar 

  120. Bauer ME, Bateman BT, Bauer ST, Shanks AM, Mhyre JM (2013) Maternal sepsis mortality and morbidity during hospitalization for delivery: temporal trends and independent associations for severe sepsis. Anesth Analg. https://doi.org/10.1213/ANE.0b013e3182a009c3

    Article  Google Scholar 

  121. Bansal K, Bathla RK, Kumar Y (2022) Deep transfer learning techniques with hybrid optimization in early prediction and diagnosis of different types of oral cancer. Soft Comput 26(21):11153–11184. https://doi.org/10.1007/s00500-022-07246-x

    Article  Google Scholar 

  122. Khalilia M, Chakraborty S, Popescu M (2011) Predicting disease risks from highly imbalanced data using random forest. BMC Med Inform Decis Mak. https://doi.org/10.1186/1472-6947-11-51

    Article  Google Scholar 

  123. Vinitha S, Sweetlin S, Vinusha H, Sa**i S (2018) Disease prediction using machine learning over big data. Int J Comput Sci Eng. https://doi.org/10.2139/ssrn.3458775

    Article  Google Scholar 

  124. Patil M, Lobo VB, Puranik P, Pawaskar A, Pai A, Mishra R (2018) A proposed model for lifestyle disease prediction using support vector machine. In 2018 9th International Conference on computing, communication and networking technologies (ICCCNT). https://doi.org/10.1109/ICCCNT.2018.8493897

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komalpreet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Singh, C. & Kumar, Y. Diagnosis and Detection of Congenital Diseases in New-Borns or Fetuses Using Artificial Intelligence Techniques: A Systematic Review. Arch Computat Methods Eng 30, 3031–3058 (2023). https://doi.org/10.1007/s11831-023-09892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09892-2

Navigation