Artificial Intelligence in Medical Image Processing for Airway Diseases

  • Chapter
  • First Online:
Connected e-Health

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1021))

Abstract

Artificial intelligence is the most contentious issue in diagnostic and therapeutic medical imaging research today. Numerous artificial intelligence (AI)-based architectures have been created to accomplish a high-precision diagnosis. To expedite therapy, artificial intelligence software analyses X-rays, CT scans, MRIs, and other pictures for opacities as well as assists physicians in diagnosing and managing airway issues in the clinical context. Airway illnesses are the third most significant cause of mortality worldwide, affecting roughly 65 million people and claiming 3 million lives each year. Thus, this chapter examined how artificial intelligence can comprehend medical images of various respiratory illnesses, including cystic fibrosis, emphysema, pneumoconiosis, pulmonary edema and embolism, asthma, and TB. The first section of this chapter focused on ways to enhance care for patients who have respiratory problems. In the next part, we looked at how artificial intelligence may identify and diagnose various airway diseases. Another section of the chapter discussed a recently released study examining researchers’ efforts to analyze airway diseases using multiple machines and deep learning models. Finally, the chapter contained a comparative study based on the kind of airway disease diagnosed, the data set utilized, and performance variables. Additionally, we addressed the evaluation and discussion of our results to convey any new information or insights gleaned from our chapter’s conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonem S, Janssens W, Das N et al (2020) Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 75:695–701

    Google Scholar 

  2. Hesamian MH, Jia W, He X et al (2020) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32:582–596. https://doi.org/10.1007/s10278-019-00227-x

  3. Ijaz MF, Attique M, Son Y (2020) Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors 20(10):2809

    Google Scholar 

  4. Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K (2021) Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput Sci 7:1–22. https://doi.org/10.7717/PEERJ-CS.369

    Article  Google Scholar 

  5. Kaur S et al (2020) Medical diagnostic systems using artificial intelligence (AI) algorithms: principles and perspectives. IEEE Access 8:228049–228069. https://doi.org/10.1109/ACCESS.2020.3042273

  6. Ijaz MF et al (2018) Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Appl Sci 8(8):1325

    Article  Google Scholar 

  7. Backaert W, Steelant B, Hellings PW et al (2021) A TRiP through the roles of transient receptor potential cation channels in type 2 upper airway inflammation. Curr Allergy Asthma Rep 21:20. https://doi.org/10.1007/s11882-020-00981-x

    Article  Google Scholar 

  8. Hargreave FE, Parameswaran K (2006) Asthma, COPD and bronchitis are just components of airway disease. Eur Respir J 28(2):264–267. https://doi.org/10.1183/09031936.06.00056106

    Article  Google Scholar 

  9. Zucker EJ, Barnes ZA, Lungren MP, Shpanskaya Y, Seekins JM, Halabi SS, Larson DB (2020) Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 19(1):131–138. https://doi.org/10.1016/j.jcf.2019.04.016

    Article  Google Scholar 

  10. Di W, Yi-Wen L, Ji Z, Bin L, Kai Z, Kai Y, Rui-Na L, Han-Cheng L, **n W, Zhen-Yuan W, ** H (2021) Fourier-transform infrared microspectroscopy of pulmonary edema fluid for postmortem diagnosis of diabetic ketoacidosis. Spectrochim Acta Part A Mol Biomol Spectrosco 258:119882. ISSN 1386-1425. https://doi.org/10.1016/j.saa.2021.119882

  11. Mandal M, Singh PK, Ijaz MF, Shafi J, Sarkar R (2021) A tri-stage wrapper-filter feature selection framework for disease classification. Sensors 21(16):5571. https://doi.org/10.3390/s21165571

    Article  Google Scholar 

  12. Kumar Y, Kaur K, Singh G (2020) Machine learning aspects and its applications towards different research areas. In: 2020 International conference on computation, automation and knowledge management (ICCAKM), pp 150–156. https://doi.org/10.1109/ICCAKM46823.2020.9051502

  13. Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, Kim W, Kang JJ (2021) Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 21(8):2852. https://doi.org/10.3390/s21082852

    Article  Google Scholar 

  14. Rucco M, Sousa-Rodrigues D, Merelli E, Johnson JH, Falsetti L, Nitti C, Salvi A (2015) Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes 8(1):1–11. https://doi.org/10.1186/s13104-015-1554-5

    Article  Google Scholar 

  15. Kumar Y, Mahajan M (2020) 5. Recent advancement of machine learning and deep learning in the field of healthcare system. In: Srivastava R, Kumar Mallick P, Swarup Rautaray S, Pandey M (eds) Computational intelligence for machine learning and healthcare informatics, pp 77–98. De Gruyter, Berlin, Boston. https://doi.org/10.1515/9783110648195-005

  16. Sills MR, Ozkaynak M, Jang H (2021) Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning. Int J Med Inf 151(March):104468. https://doi.org/10.1016/j.ijmedinf.2021.104468

  17. Srinivasu PN, Ahmed S, Alhumam A, Kumar AB, Ijaz MF (2021) An AW-HARIS based automated segmentation of human liver using CT images. CMC-Comput Mater Continua 69(3):3303–3319

    Article  Google Scholar 

  18. Suarez-Ibarrola R, Sigle A, Eklund M, Eberli D, Miernik A, Benndorf M, Bamberg F, Gratzke C (2021) Artificial intelligence in magnetic resonance imaging-based prostate cancer diagnosis: where do we stand in 2021. Eur Urol Focus S2405-4569(21):00099-7. Advance online publication. https://doi.org/10.1016/j.euf.2021.03.020

  19. Alfian G et al (2018) A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors 18(7):2183

    Article  Google Scholar 

  20. Sharma N, Kumar Y (2013) A systematic approach for despeckling of medical ultrasound images. Int J Comput Sci Eng Inf Technol Res

    Google Scholar 

  21. Ibrahim AU, Ozsoz M, Serte S et al (2021) Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cogn Comput. https://doi.org/10.1007/s12559-020-09787-5

    Article  Google Scholar 

  22. Marques F, de Bruijne M, Dubost F, Tiddens HAW, Kemner-van de Corput M (2018) Quantification of lung abnormalities in cystic fibrosis using deep networks 51 https://doi.org/10.1117/12.2292188

  23. Karimizadeh A, Vali M, Modaresi M (2021) Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis. Biomed Signal Process Control 64:102266. ISSN 1746-8094. https://doi.org/10.1016/j.bspc.2020.102266

  24. Rachel M (2020) Detection of cystic fibrosis symptoms based on X-ray images using machine learning- pilot study. Biomed J Sci Tech Res 24(2):18078–18083. https://doi.org/10.26717/bjstr.2020.24.004019

  25. Campo M, Pascau J, Estépar R (2018) Emphysema quantification on simulated X-rays through deep learning techniques. In: IEEE 15th International symposium on biomedical imaging (ISBI 2018), pp 273–276. https://doi.org/10.1109/ISBI.2018.8363572

  26. Chhillar S, Singh G, Singh A, Saini VK (2019) Quantitative analysis of pulmonary emphysema by congregating statistical features. In: 2019 3rd International conference on recent developments in control, automation and power engineering, RDCAPE 2019, Oct 2019, pp 329–333 https://doi.org/10.1109/RDCAPE47089.2019.8979081

  27. Bortsova G, Dubost F, Ørting S, Katramados I, Hogeweg L, Thomsen L, Wille M, de Bruijne M (2018) Deep learning from label proportions for emphysema quantification. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics), vol 11071 LNCS. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-030-00934-2_85

  28. Asuntha A, Srinivasan A (2020) Deep learning for lung cancer detection and classification. Multimedia Tools Appl 79(11–12):7731–7762. https://doi.org/10.1007/s11042-019-08394-3

    Article  Google Scholar 

  29. Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T (2019) Automatic lung cancer prediction from chest X-ray images using the deep learning approach. In: BMEiCON 2018—11th Biomedical engineering international conference. https://doi.org/10.1109/BMEiCON.2018.8609997

  30. Joy L (2019) X ray AI: lung disease prediction using machine learning. Int J Inf Syst Comput Sci. https://doi.org/10.30534/ijiscs/2019/12822019

  31. Alam TM, Shaukat K, Hameed IA, Khan WA, Sarwar MU, Iqbal F, Luo S (2021) A novel framework for prognostic factors identification of malignant mesothelioma through association rule mining. Biomed Signal Process Control68(May):102726. https://doi.org/10.1016/j.bspc.2021.102726

  32. Hu X, Yu Z (2019) Diagnosis of mesothelioma with deep learning. Oncol Lett 17(2):1483–1490. https://doi.org/10.3892/ol.2018.9761

    Article  Google Scholar 

  33. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, Manceron P, Toldo S, Zaslavskiy M, Le Stang N, Girard N, Elemento O, Nicholson AG, Blay JY, Galateau-Sallé F, Wainrib G, Clozel T (2019) Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med 25(10):1519–1525. https://doi.org/10.1038/s41591-019-0583-3

    Article  Google Scholar 

  34. Zhang L, Rong R, Li Q et al (2021) A deep learning-based model for screening and staging pneumoconiosis. Sci Rep 11:2201. https://doi.org/10.1038/s41598-020-77924-z

    Article  Google Scholar 

  35. Yu P, Xu H, Zhu Y, Yang C, Sun X, Zhao J (2011) An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs. J Digit Imaging 24(3):382–393. https://doi.org/10.1007/s10278-010-9276-7

    Article  Google Scholar 

  36. Liao R, Rubin J, Lam G, Berkowitz S, Dalal S, Wells W, Horng S, Golland P (2019) Semi-supervised learning for quantification of pulmonary edema in chest X-ray images, pp 1–12. http://arxiv.org/abs/1902.10785

  37. Wang, X et al (2019) Pulmonary edema severity estimation in chest radiographs using deep learning. 2019 MIDL, London, 296, 1–5

    Google Scholar 

  38. Kumar A, Yen-Yu W, Kai-Che L, I-Chen T, Ching-Chun H, Nguyen H (2014) Distinguishing normal and pulmonary edema chest x-ray using Gabor filter and SVM. In: IEEE International symposium on bioelectronics and bioinformatics (IEEE ISBB 2014), pp 1–4. https://doi.org/10.1109/ISBB.2014.6820918

  39. Liu W, Liu M, Guo X, Zhang P, Zhang L, Zhang R, Kang H, Zhai Z, Tao X, Wan J, **e S (2020) Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol 30(6):3567–3575. https://doi.org/10.1007/s00330-020-06699-8

    Article  Google Scholar 

  40. Huang SC, Kothari T, Banerjee I, Chute C, Ball RL, Borus N, Huang A, Patel BN, Rajpurkar P, Irvin J, Dunnmon J, Bledsoe J, Shpanskaya K, Dhaliwal A, Zamanian R, Ng AY, Lungren MP (2020) PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med 3(1):1–9. https://doi.org/10.1038/s41746-020-0266-y

    Article  Google Scholar 

  41. Ma J, Song Y, Tian X et al (2020) Survey on deep learning for pulmonary medical imaging. Front Med 14:450–469. https://doi.org/10.1007/s11684-019-0726-4

    Article  Google Scholar 

  42. Firdous N, Bhardwaj S, Bhat AH (2021) Comparative analysis of machine learning algorithms for detection of pulmonary embolism—a non-cardiac cause of cardiac arrest. In: Sheth A, Sinhal A, Shrivastava A, Pandey AK (eds) Intelligent systems. Algorithms for intelligent systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-2248-9_22

  43. Fadziso T, Choi MS (2020) Use of AI and machine learning for asthma patients: a systematic literature review. Malays J Med Biol Res 8(1):7–12. https://doi.org/10.18034/mjmbr.v7i2.517

  44. Zhang W, Ram S (2020) A comprehensive analysis of triggers and risk factors for asthma based on machine learning and large heterogeneous data sources. MIS Q Manag Inf Syst 44(1):305–349

    Google Scholar 

  45. Khasha R, Sepehri MM, Taherkhani N (2021) Detecting asthma control level using feature-based time series classification. Appl Soft Comput 111:107694. https://doi.org/10.1016/j.asoc.2021.107694

  46. Zhan J, Chen W, Cheng L, Wang Q, Han F, Cui Y (2020) Diagnosis of asthma based on routine blood biomarkers using machine learning. Comput Intell Neurosci. https://doi.org/10.1155/2020/8841002

  47. Gao XW, James-Reynolds C, Currie E (2020) Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing 392:233–244. https://doi.org/10.1016/j.neucom.2018.12.086

    Article  Google Scholar 

  48. Duong L, Le N, Tran T, Ngo V, Nguyen P (2021) Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning. Expert Syst Appl 184:115519. https://doi.org/10.1016/j.eswa.2021.115519

  49. Chandra TJ (2012) Same day sputum smear microscopy approach for the diagnosis of pulmonary tuberculosis in a microscopy centre at Rajahmundry. Indian J Tuberc 59(3):141–144

    Google Scholar 

  50. Vlastos I, Mullol J, Hox V et al (2021) Multidisciplinary care for severe or uncontrolled chronic upper airway diseases. Curr Allergy Asthma Rep 21:27. https://doi.org/10.1007/s11882-021-01004-z

    Article  Google Scholar 

  51. Peek SF, Ollivett TL, Divers TJ (2018) Respiratory diseases. Rebhun’s Dis Dairy Cattle 94–167. https://doi.org/10.1016/B978-0-323-39055-2.00004-8

  52. Forum of International Respiratory Societies (2017) The global impact of respiratory disease. In: Forum of international respiratory societies

    Google Scholar 

  53. Zheng R, Zhang L, ** H (2021) Pneumoconiosis identification in chest X-ray films with CNN-based transfer learning. CCF Trans High Perform Comput 3(2):186–200. https://doi.org/10.1007/s42514-021-00067-8

    Article  Google Scholar 

  54. Rodriguez P, Heagerty J, Goss H, Veenstra L, Bansal A (2020) A machine learning approach to predict mortality in cystic fibrosis. Elsevier

    Google Scholar 

  55. Malagelada C, Bendezú RA, Seguí S, Vitrià J, Merino X, Nieto A, Sihuay D, Accarino A, Molero X, Azpiroz F (2020) Motor dysfunction of the gut in cystic fibrosis. Neurogastroenterol Motil 32(9):1–9. https://doi.org/10.1111/nmo.13883

    Article  Google Scholar 

  56. Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, Lynch DA (2020) Deep learning enables automatic classification of emphysema pattern at CT. Radiology 294(2):434–444. https://doi.org/10.1148/radiol.2019191022

    Article  Google Scholar 

  57. Sori WJ, Feng J, Godana AW, Liu S, Gelmecha DJ (2021) DFD-Net: lung cancer detection from denoised CT scan image using deep learning. Front Comput Sci 15(2). https://doi.org/10.1007/s11704-020-9050-z

  58. Hassanzad M, Orooji A, Valinejadi A, Velayati A (2017) A fuzzy rule-based expert system for diagnosing cystic fibrosis. Electron Phys 9(12):5974–5984. https://doi.org/10.19082/5974

  59. Mondal S, Sadhu AK, Dutta PK (2021) Adaptive local ternary pattern on parameter optimized-faster region convolutional neural network for pulmonary emphysema diagnosis. IEEE Access 9:114135–114152. https://doi.org/10.1109/ACCESS.2021.3105114

    Article  Google Scholar 

  60. Nyboe S, Jens Ø, Laura P, Mathilde HT, Marleen MWW (2018) Detecting Emphysema with multiple instance learning. Department of Computer Science, University of Copenhagen, Copenhagen, Denmark Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark Department of Diagnostic Imaging, Bispebjerg. Isbi, pp 510–513

    Google Scholar 

  61. Sajja TK, Devarapalli RM, Kalluri HK (2019) Lung cancer detection based on CT scan images by using deep transfer learning. Traitement du Signal 36(4):339–344. https://doi.org/10.18280/ts.360406

  62. Jawarkar J, Solanki N, Vaishnav M, Vichare H, Degadwala S (2021) Multistage lung cancer detection and prediction using deep learning. Int J Sci Res Sci Eng Technol 54–60

    Google Scholar 

  63. Kitajima K, Matsuo H, Kono A, Kuribayashi K, Kijima T, Hashimoto M, Hasegawa S, Murakami T, Yamakado K (2021) Deep learning with deep convolutional neural network using FDG-PET/CT for malignant pleural mesothelioma diagnosis. Oncotarget 12(12):1187–1196. https://doi.org/10.18632/oncotarget.27979

  64. Wang X, Yu J, Zhu Q, Li S, Zhao Z, Yang B, Pu J (2020) Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Occup Environ Med 77(9):597–602. https://doi.org/10.1136/oemed-2019-106386

    Article  Google Scholar 

  65. Hao C, ** N, Qiu C, Ba K, Wang X, Zhang H, Zhao Q (2021) Balanced convolutional neural networks for pneumoconiosis detection

    Google Scholar 

  66. Lai NH, Shen WC, Lee CN, Chang JC, Hsu MC, Kuo LN, Yu MC, Chen HY (2020) Comparison of the predictive outcomes for anti-tuberculosis drug-induced hepatotoxicity by different machine learning techniques. Comput Methods Programs Biomed 188:105307. https://doi.org/10.1016/j.cmpb.2019.105307

  67. **e Y, Meng WY, Li RZ, Wang YW, Qian X, Chan C, Yu ZF, Fan XX, Pan HD, **e C, Wu QB, Yan PY, Liu L, Tang YJ, Yao XJ, Wang MF, Leung ELH (2021) Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 14(1). https://doi.org/10.1016/j.tranon.2020.100907

  68. Latif MZ, Shaukat K, Luo S, Hameed IA, Iqbal F, Alam TM (2020) Risk factors identification of malignant mesothelioma: a data mining based approach. In: 2nd International conference on electrical, communication and computer engineering, ICECCE 2020, 12–13 June. https://doi.org/10.1109/ICECCE49384.2020.9179443

  69. Alam TM, Shaukat K, Mahboob H, Sarwar MU, Iqbal F, Nasir A, Hameed IA, Luo S (2021) A machine learning approach for identification of malignant mesothelioma etiological factors in an imbalanced dataset. Comput J. https://doi.org/10.1093/comjnl/bxab015

    Article  Google Scholar 

  70. Choudhury A (2021) Predicting cancer using supervised machine learning: Mesothelioma. Technol Health Care 29(1):45–58. https://doi.org/10.3233/THC-202237

    Article  Google Scholar 

  71. Zhang L, Rong R, Li Q, Yang DM, Yao B, Luo D, Zhang X, Zhu X, Luo J, Liu Y, Yang X, Ji X, Liu Z, **e Y, Sha Y, Li Z, **ao G (2021) A deep learning-based model for screening and staging pneumoconiosis. Sci Rep 11(1):1–7. https://doi.org/10.1038/s41598-020-77924-z

    Article  Google Scholar 

  72. Wang Z (2020) Deep learning for computer-aided diagnosis of pneumoconiosis, pp 1–14

    Google Scholar 

  73. Lin H, Luo Y, Sun Q, Zhang J, Tuo Y, Zhang Z, Wang L, Deng K, Chen Y, Huang P, Wang Z (2018) Identification of pulmonary edema in forensic autopsy cases of sudden cardiac death using Fourier transform infrared microspectroscopy: a pilot study. Anal Chem 90(4):2708–2715. https://doi.org/10.1021/acs.analchem.7b04642

    Article  Google Scholar 

  74. Hong KJ, Essid S, Ser W, Foo DCG (2018) A robust audio classification system for detecting pulmonary edema. Biomed Signal Process Control 46:94–103. https://doi.org/10.1016/j.bspc.2018.07.004

    Article  Google Scholar 

  75. Zhang O, Minku LL, Gonem S (2020) Detecting asthma exacerbations using daily home monitoring and machine learning. J Asthma0(0):000. https://doi.org/10.1080/02770903.2020.1802746

  76. Awal MA, Hossain MS, Debjit K, Ahmed N, Nath RD, Habib GMM, Khan MS, Islam MA, Mahmud MAP (2021) An early detection of asthma using BOMLA detector. IEEE Access 9:58403–58420. https://doi.org/10.1109/ACCESS.2021.3073086

    Article  Google Scholar 

  77. Li X, Zhou Y, Du P, Lang G, Xu M, Wu W (2021) A deep learning system that generates quantitative CT reports for diagnosing pulmonary Tuberculosis. Appl Intell 51(6):4082–4093. https://doi.org/10.1007/s10489-020-02051-1

    Article  Google Scholar 

  78. Hwa SKT, Bade A, Hijazi MHA, Jeffree MS (2020) Tuberculosis detection using deep learning and contrast-enhanced canny edge detected X-Ray images. IAES Int J Artif Intell 9(4):713–720. https://doi.org/10.11591/ijai.v9.i4.pp713-720s

  79. Panicker RO, Kalmady KS, Rajan J, Sabu MK (2018) Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybern Biomed Eng 38(3):691–699. https://doi.org/10.1016/j.bbe.2018.05.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, A., Bawa, R.K., Kumar, Y. (2022). Artificial Intelligence in Medical Image Processing for Airway Diseases. In: Mishra, S., González-Briones, A., Bhoi, A.K., Mallick, P.K., Corchado, J.M. (eds) Connected e-Health. Studies in Computational Intelligence, vol 1021. Springer, Cham. https://doi.org/10.1007/978-3-030-97929-4_10

Download citation

Publish with us

Policies and ethics

Navigation