Log in

The development of silicate matrix phosphors with broad excitation band for phosphor-convered white LED

  • Published:
Chinese Science Bulletin

Abstract

This paper briefly reviews the recent progress in alkaline earth silicate host luminescent materials with broad excitation band for phosphor-convered white LED. Among them, the Sr-rich binary phases (Sr, Ba, Ca, Mg)2SiO4:Eu2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu2+ are excellent phosphors for blue LED chip white LED. They have very broad excitation bands and exhibit strong absorption of blue radiation in the range of 450–480 nm. And they exhibit green and yellow-orange emission under the InGaN blue LED chip radiation, respectively. The luminous efficiency of InGaN-based (Sr, Ba, Ca, Mg)2SiO4:Eu2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu2+ is about 70–80 lm/W, about 95%–105% that of the InGaN-based YAG:Ce, while the correlated color temperature is between 4600–11000 K. Trinary alkaline earth silicate host luminescent materials MO(M=Sr, Ca, Ba)-Mg(Zn)O-SiO2 show strong absorption of deep blue/near-ultraviolet radiation in the range of 370–440 nm. They can convert the deep blue/near-ultraviolet radiation into blue, green, and red emissions to generate white light. The realization of high-performance white-light LEDs by this approach presents excellent chromaticity and high color rendering index, and the application disadvantages caused by the mixture of various matrixes can be avoided. Moreover, the application prospects and the trends of research and development of alkaline earth silicate phosphors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308: 1274

    Article  PubMed  CAS  Google Scholar 

  2. Schlotter P, Baur J, Hielscher Ch, et al. Fabrication and characterization of GaN:InGaN:AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs. Mater Sci Eng B, 1999, 59: 390–394

    Article  Google Scholar 

  3. Jüstel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed, 1998, 37(22): 3084

    Article  Google Scholar 

  4. Colvin V, Schlamp M, Alivisatos A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370: 354–357

    Article  CAS  Google Scholar 

  5. Lin J, Shi Y J, Yang Y. Improving the performance of polymer light-emitting diodes using polymer solid solutions. Appl Phys Lett, 2001, 79(5): 578–580

    Article  Google Scholar 

  6. Li Y Q, Delsing C A, With de G, et al. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2−δN2+2/3δ(M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors. Chem Mater, 2005, 17: 3242–3248

    Article  CAS  Google Scholar 

  7. Klasens H A, Hoekstra A H, Cox A P M. Ultraviolet fluorescence of some ternary silicates activated with lead. J Electrochem Soc, 1957, 104: 93

    Article  CAS  Google Scholar 

  8. Moore P B, Araki T. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am Mineral, 1972, 57: 1355

    CAS  Google Scholar 

  9. Barry T L. Equilibria and Eu2+ luminescence of subsolidus phase bounded by Ba3MgSi2O8, Sr3MgSi2O8, Ca3MgSi2O8. J Electrochem Soc, 1968, 115(7): 733–738

    Article  CAS  Google Scholar 

  10. Barry T L. Luminescent properties of Eu2+ and Eu2++Mn2+ activated BaMg2Si2O7. J Electrochem Soc, 1968, 117(3): 381–385

    Article  Google Scholar 

  11. Blasse G, Wanmaker W L, Vrugt J W, et al. Fluorescence of Eu2+ activated silicates. Philips Res Rep, 1968, 23: 189–193

    CAS  Google Scholar 

  12. Poort S H M, Mererink A, Blasse G. Lifetime measurements in Eu2+-doped host lattices. J Phys Chem Solids, 1997, 58(9): 1451–1456

    Article  CAS  Google Scholar 

  13. Blasse G, Wanmaker W L, Vrugt J W. Some new classes of efficient Eu2+-activated phosphors. J Electrochem Soc, 1968, 115: 673

    Article  CAS  Google Scholar 

  14. Dorenbos P. Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J Lumin, 2003, 104: 239–260

    Article  CAS  Google Scholar 

  15. **ao Z G, Luo X X. Long Afterglow Luminescence Materials and the Related Applications (in Chinese). 2nd ed. Bei**g: Chemical Industry Press, 2005. 197–220

    Google Scholar 

  16. **ao Z G, **ao Z Q. Long afterglow silicate phosphor and its manufacturing method. US Patent, 6093346, 2000-7-25

  17. **ao Z G, Luo X X, Shi C S. Luminescence Material for Semiconducting Illumination (in Chinese). Bei**g: Chemical Industry Press, 2008, in press

    Google Scholar 

  18. Fields Jr J M, Dear P S, Brown Jr J J. Phase equilibria in the system BaO-SrO-SiO2. J Am Ceram Soc, 1972, 55: 585–588

    Article  CAS  Google Scholar 

  19. Pieper G, Eysel W, Hahn Th. Solid solubility and polymorphism in the system Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4. J Am Ceram Soc, 1972, 55: 619–622

    Article  CAS  Google Scholar 

  20. Catti M, Gazzoni G, Ivaldi G. Structures of twinned β-Sr2SiO4 and of α′-Sr1.9Ba0.1SiO4. Acta Cryst, 1983, C39: 29–34

    CAS  Google Scholar 

  21. Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Comm, 2005, 133: 187–190

    Article  CAS  Google Scholar 

  22. Lim M A, Park J K, Kim C H, et al. Luminescence characteristics of green light emitting Ba2SiO4:Eu2+ phosphor. J Mater Sci Lett, 2003, 22: 1351–1353

    Article  CAS  Google Scholar 

  23. Poort S H M, Janssen W, Blasse G. Optical properties of Eu2+-activated orthosilicates and orthophosphates. J Alloys Comp, 1997, 260: 93–97

    Article  CAS  Google Scholar 

  24. Kim J S, Park Y H, Kim S M, et al. Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Comm, 2005, 133: 445–448

    Article  CAS  Google Scholar 

  25. Barry T L. Fluorescence of Eu2+ activated phase in binary alkaline earth orthosilicate systems. J Electrochem Soc, 1968, 115(11): 1181–1183

    Article  CAS  Google Scholar 

  26. Park J K, Lim M A, Kim C H, et al. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties. Appl Phys Lett, 2003, 82: 683–685

    Article  CAS  Google Scholar 

  27. Park J K, Choi K J, Kim C H, et al. Optical properties of Eu2+-activated Sr2SiO4 phosphor for light-emitting diodes. Electrochem Solid State Lett, 2004, 7(5): H15–H17

    Article  CAS  Google Scholar 

  28. Yoo J S, Kim S H, Yoo W T, et al. Control of spectral properties of strontium-alkaline earth-silicate-europium phosphors for LED applications. J Electrochem Soc, 2005, 152(5): G382–G385

    Article  CAS  Google Scholar 

  29. Kang H S, Kang Y C, Jung K Y, et al. Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis. Mater Sci Eng B, 2005, 121: 81–85

    Article  Google Scholar 

  30. Qiu J, Miura K, Sugimoto N, et al. Preparation and fluorescence properties of fluoroaluminate glasses containing Eu2+ ions. J Non-Cryst Solids, 1997, 213-214: 266–270

    Article  Google Scholar 

  31. Poort S H M, van Krevel J W H, Stomphorst R, et al. Luminescence of Eu2+ in host lattices with three alkaline earth ions in a row. J Solid State Chem, 1996, 122: 432–435

    Article  CAS  Google Scholar 

  32. Park J K, Han C H, Kim C H, et al. Luminescence properties of YOBr: Eu phosphors. Electrochem Solid State Lett, 2002, 5: H11–H13

    Article  Google Scholar 

  33. Park J K, Choi K J, Park S H, et al. Application of Ba2+-Mg2+ co-doped Sr2SiO4:Eu yellow phosphor for white-light-emitting diodes. J Electrochem Soc, 2005, 152(8): H121–H123

    Article  CAS  Google Scholar 

  34. Luo X X. Silicate matrix phosphors with broad excitation band for white LED. In: 10th National Symposium on LED, Dalian, 2006

  35. **ao Z G, Luo X X, Yu J J, et al. New silicate phosphor activated by rare earth and the related applications. Second-Class National Invention Award, China, 2006

  36. Park J K, Lim M, Choi K J, et al. Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor. J Mater Sci, 2005, 40: 2069–2071

    Article  CAS  Google Scholar 

  37. Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes. Appl Phys Lett, 2004, 84: 1647–1649

    Article  CAS  Google Scholar 

  38. Park J K, Choi K J, Kim K N, et al. Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry. Appl Phys Lett, 2005, 87(3): 031108

    Article  Google Scholar 

  39. Li P L, Yang Z P, Wang Z J, et al. Preparation and luminescence characteristics of Sr3SiO5:Eu2+ phosphor for white LED. Chin Sci Bull, 2008, 53(7): 974–977

    Article  CAS  Google Scholar 

  40. Park J K, Choi K J, Yeon J H, et al. Embodiment of the warm whitelight-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor. Appl Phys Lett, 2006, 88: 043511

    Article  Google Scholar 

  41. Liu J, Lian H Z, Shi C S. A new luminescent material: Li2CaSiO4: Eu2+. Mater Lett, 2006, 60: 2830–2833

    Article  CAS  Google Scholar 

  42. Haferkorn B, Meyer G Z. Li2EuSiO4, ein europium(II)-dilithosilicat: Eu[(Li2Si)O4]. Anorg Allg Chem, 1998, 624(7): 1079–1081

    Article  CAS  Google Scholar 

  43. Pardha S M, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4—a potential orange-yellow phosphor for solid-state lighting. Chem Mater, 2006, 18: 5267–5272

    Article  Google Scholar 

  44. Setlur A A, Heward W J, Gao Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting. Chem Mater, 2006, 18: 3314–3322

    Article  CAS  Google Scholar 

  45. Yang W J, Luo L Y, Chen T M, et al. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED. Chem Mater, 2005, 17: 3883–3888

    Article  CAS  Google Scholar 

  46. Liu J, Lian H Z, Shi C S, et al. Eu2+-doped high-temperature phase Ca3SiO4Cl2—A yellowish orange phosphor for white light-emitting diodes. J Electrochem Soc, 2005, 152(11): G880–G884

    Article  Google Scholar 

  47. Liu J, Lian H Z, Sun J Y, et al. Characterization and properties of green emitting Ca3SiO4Cl2:Eu2+ powder phosphor for white lightemitting diodes. Chem Lett, 2005, 34(10): 1340–1341

    Article  CAS  Google Scholar 

  48. Akella A, Keszler D A. Sr2LiSiO4F: Synthesis, structure, and Eu2+ luminescence. Chem Mater, 1995, 7: 1229–1302

    Article  Google Scholar 

  49. Lakshminarasimhan N, Varadaraju U V. White-light generation in Sr2SiO4:Eu2+,Ce3+ under near-UV excitation—A novel phosphor for solid-state lighting. J Electrochem Soc, 2005, 152(9): H152–H156

    Article  CAS  Google Scholar 

  50. Jang H S, Jeon D Y. Yellow-emitting Sr3SiO5:Ce3+,Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes. Appl Phys Lett, 2007, 90: 041906

    Article  Google Scholar 

  51. Muthu S, Schuurmans F J, Pashley M D. Red, green, and blue LEDs for white light illumination. IEEE Trans Quant Electr, 2002, 8: 333–338

    Article  CAS  Google Scholar 

  52. Poort S H M, Blokpoel P W, Blasse G. Luminescence of Eu2+ in barium and strontium aluminate and gallate. Chem Mater, 1995, 7(8): 1547–1551

    Article  CAS  Google Scholar 

  53. Poort S H M, Reijnhoudt H M, van der Kuip H O T, et al. Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row. J Alloys Comp, 1996, 241: 75–81

    Article  CAS  Google Scholar 

  54. Luo X X, Duan J X, Lin G X, et al. New type silicate long afterglow phosphors (in Chinese). Chin J Lumin, 2003, 24(2): 165–170

    CAS  Google Scholar 

  55. Luo X X, Yu J J, Lin G X, et al. Development of long afterglow phosphors (in Chinese). Chin J Lumin, 2002, 23(5): 497–502

    CAS  Google Scholar 

  56. **a W, Lei M K, Luo X X, et al. M2MgSi2O7:Eu,Re (M=Ca,Sr) phosphor with with broad excitation band. Spectr Spectr Anal, 2008, 28(1): 41–46

    CAS  Google Scholar 

  57. Kuo C H, Sheu J K, Chang S J, et al. n-UV+blue/green/red white light emitting diode lamps. Jpn J Appl Phys, 2003, 42: 2284–2287

    Article  CAS  Google Scholar 

  58. Huh Y D, Shim J H, Kim Y H, et al. Optical properties of three-band white light emitting diodes. J Electrochem Soc, 2003, 150(2): H57–H60

    Article  CAS  Google Scholar 

  59. Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor. Appl Phys Lett, 2004, 84: 2931

    Article  CAS  Google Scholar 

  60. Kim J S, Lim K T, Jeong Y S, et al. Full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphors for white-light-emitting diodes. Solid State Comm, 2005, 135(1–2): 21–24

    Article  CAS  Google Scholar 

  61. Kim J S, Park Y H, Choi J C, et al. Temperature-dependent emission spectrum of Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white-light-emitting diode. Electrochem Solid State Lett, 2005, 8(8): H65–H67

    Article  CAS  Google Scholar 

  62. Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl Phys Lett, 2004, 85(17): 3696–3698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ****an Luo.

Additional information

Supported by the High-Tech Research and Development Program of China (Grant Nos. 2004AA001530 and 2006AA03A137) and Dalian Maritime University Youth Teacher Foundation Program (Grant No. DLMU-ZL-200713)

About this article

Cite this article

Luo, X., Cao, W. & Sun, F. The development of silicate matrix phosphors with broad excitation band for phosphor-convered white LED. Chin. Sci. Bull. 53, 2923–2930 (2008). https://doi.org/10.1007/s11434-008-0392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0392-4

Keywords

Navigation