Log in

Effect of do** Sr2+ on luminescence and abnormal thermal quenching behavior of silicate solid-solution green phosphor Ba9Lu2Si6O24:Eu2+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel Eu2+ ions doped silicate solid-solution green phosphors, (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25), have been successfully prepared by conventional sintering method. The Rietveld refinement result was taken to determine the pure phase of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25). The characteristic optical properties, especially the thermal quenching properties were studied. The excitation spectra of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ span from 350 to 460 nm. When the Sr2+ contents increased, the dominate emission peak was found to red shift from 503 to 525 nm under n-UV excitation. The emission intensity of (Ba0.75Sr0.25)9Lu2Si6O24:0.14Eu2+ can reach 90% compared with the emission intensity of commercial phosphor LMS520B. Moreover, when the do** concentration of Sr2+ reaches 25%, the phosphor can obtain a smaller thermal quenching (TQ), which still kept 85% of the initial emission intensity when the temperature increased to 150 °C. The reason why the temperature stability increased along with the increasing Sr2+ ions was illustrated expressly through the schematic diagram and the activation energy calculated by Arrhenius equation. Moreover, the chromaticity index shifted from (0.2157, 0.4165) to (0.2812, 0.5744), and the color purity of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ increased from 32.36% to 56.82% with the concentration of Sr2+ changing from y = 0 to y = 0.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Science 308, 1274–1278 (2005)

    Article  CAS  Google Scholar 

  2. A.A. Setlur, W.J. Heward, M.E. Hannah, Chem. Mater. 20, 6277–6283 (2008)

    Article  CAS  Google Scholar 

  3. H.O. Ji, J.Y. Su, Y.R.H. Do, Light Sci. Appl. 141, e141 (2014)

    Google Scholar 

  4. A. Katelnikovas, T. Bareika, P. Vitta, H. Winkler, Opt. Mater. 32, 1261 (2010)

    Article  CAS  Google Scholar 

  5. G. Zhu, Z. Li, C. Wang, J. Mater. Sci. 29, 2216 (2018)

    CAS  Google Scholar 

  6. Z. Cheng, Y. Zhang, J. Yu, J. Mater. Sci. 29, 14495 (2018)

    CAS  Google Scholar 

  7. S. **n, S. Yuan, C. Wang, J. Mater. Sci. 29, 4895–4899 (2018)

    CAS  Google Scholar 

  8. S. Park, S. Kang, J. Mater. Sci. 14, 223 (2003)

    CAS  Google Scholar 

  9. A.L. Diaz, D.A. Keszler, Chem. Mater. 9, 2071 (1997)

    Article  CAS  Google Scholar 

  10. C.C. Lin, Y.S. Tang, S.F. Hu, R.S. Liu, J. Lumin. 129, 1682–1684 (2009)

    Article  CAS  Google Scholar 

  11. S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H.J. Seo, Inorg. Chem. 50, 2897–2900 (2011)

    Article  CAS  Google Scholar 

  12. D.Y. Wang, C.H. Huang, Y.C. Wu, T.M. Chen, J. Mater. Chem. 21, 10818–10822 (2011)

    Article  CAS  Google Scholar 

  13. J.Y. Han, W.B. Im, D. Kim, S.H. Cheong, G.Y. Lee, D.Y. Jeon, J. Mater. Chem. 22, 5374–5381 (2012)

    Article  CAS  Google Scholar 

  14. G.G. Li, D.L. Geng, M.M. Shang, C. Peng, Z.Y.J.J. Cheng, Mater. Chem. 21, 13334–13344 (2011)

    Article  CAS  Google Scholar 

  15. Y.F. Liu, X. Zhang, Z.D. Hao, X.J. Wang, J.H. Zhang, Chem. Commun. 47, 10677–10679 (2011)

    Article  CAS  Google Scholar 

  16. N. Hirosaki, R.J. **e, Y. Yamamoto, T. Suehiro, M. Mitomo, Appl. Phys. Lett. 86, 211905–211905 (2005)

    Article  Google Scholar 

  17. R.J. Kimoto, Y. **e, K. Matsui, N.H. Ishizuka, Appl. Phys. Lett. 94, 041908–041908 (2009)

    Article  Google Scholar 

  18. C. Zhang, Y. Liu, J. Zhang, Mater. Res. Bull. 80, 288–294 (2016)

    Article  CAS  Google Scholar 

  19. Y. Liu, C. Zhang, Z. Cheng, Inorg. Chem. 55, 8628–8635 (2016)

    Article  CAS  Google Scholar 

  20. Y. Liu, J. Zhang, C. Zhang, Adv. Opt. Mater. 3, 1096–1101 (2015)

    Article  CAS  Google Scholar 

  21. L. Wang, H. Guo, J. Zhejiang Norm Univ. (2015)

  22. L.H. Wang, L.F. Schneemeyer, R.J. Cava, T. Siegrist, J. Solid State Chem. 113, 211 (1994)

    Article  CAS  Google Scholar 

  23. G. Ju, Y. Hu, L. Chen, X. Wang, J. Appl. Phys. 111, 113508 (2012)

    Article  Google Scholar 

  24. S. Schmiechen, H. Schneider, P. Wagatha, Chem. Mater. 26, 2712–2719 (2014)

    Article  CAS  Google Scholar 

  25. P. Pust, A.S. Wochnik, E. Baumann, Chem. Mater. 26, 3544–3549 (2014)

    Article  CAS  Google Scholar 

  26. G. Blasse, B.C. Grabmaier, Lumin. Mater (Springer, Berlin, 1994)

    Book  Google Scholar 

  27. V. Bachmann, O. Oeckler, W. Schnick, A. Meijerink, Cheminform. 21, 316–325 (2009)

    CAS  Google Scholar 

  28. R.D. Shannon, Crystal physics, diffraction, theoretical and general. Acta Crystallogr. 37, 636–641 (1981)

    Article  Google Scholar 

  29. M.Y. Peng, Z.W. Pei, G.Y. Hong, Q. Su, J. Mater. Chem. 13, 1202 (2003)

    Article  CAS  Google Scholar 

  30. J. Brgoch, C. Borg, K.A. Denault, Solid State Sci. 18, 149–154 (2013)

    Article  CAS  Google Scholar 

  31. F.S. Liu, Q.L. Liu, J.K. Liang, J. Lumin 111, 61–68 (2005)

    Article  CAS  Google Scholar 

  32. W.R. Liu, C.W. Yeh, C.H. Huang, C.C. Lin, Y.C. Chiu, Y.T. Yeh, R.S. Liu, J. Mater. Chem. 21, 3740 (2011)

    Article  CAS  Google Scholar 

  33. P. Dorenbos, J. Phys. 17, 8103 (2005)

    CAS  Google Scholar 

  34. B.H.G.G. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989)

    Google Scholar 

  35. S. Bhushan, M.V. Chukichev, J. Mater. Sci. 7, 319–321 (1988)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Doctoral Research Fund of Liaoning Province (Nos. 201601351, 20170520277), the National Natural Science Foundation of China (No. 11704043) and the Special Foundation for theoretical physics Research Program of China (Nos. 11747113, 11747117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Jiang, J., Zhu, G. et al. Effect of do** Sr2+ on luminescence and abnormal thermal quenching behavior of silicate solid-solution green phosphor Ba9Lu2Si6O24:Eu2+. J Mater Sci: Mater Electron 29, 19923–19931 (2018). https://doi.org/10.1007/s10854-018-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0122-x

Navigation