Log in

Tunable white light emission of rare earth ions doped single matrix SrAl2Si2O8 phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminosilicate phosphors have been successfully applied in laser technology and fluorescent lamps due to their high luminescence properties and excellent chemical stability. Consequently, research on novel aluminosilicate phosphors has a good application prospect. Rare earth (RE) ions doped SrAl2Si2O8 phosphors were prepared by solid-phase method. Excited at 350 nm, the phosphor doped with Dy3+ ions emits a blue light peaking at 482 nm and an orange light peaking at 575 nm, respectively, and its optimum do** concentration is 0.8 at.%. At the NUV excitation of 377 nm, the phosphor doped with Tb3+ ions shows emission peaks at 489 nm, 544 nm, 585 nm and 623 nm, and the luminescence intensity is the strongest when the content of Tb3+ is 9 at.%. The concentration quenching mechanism of Dy3+ and Tb3+ RE ions is the electric dipole–dipole interaction. For SrAl2Si2O8:Tb3+, Sm3+ phosphors, the energy transfer efficiency is 85.4%, and the mechanism is electric dipole–quadrupole interaction. For SrAl2Si2O8:Dy3+ and SrAl2Si2O8:Tb3+, Sm3+ phosphors, the best CIE coordinates are (0.275, 0.308), (0.316, 0.386). The consequences display that RE ions doped single matrix SrAl2Si2O8 phosphors can achieve effective white light emission and have high application value in white LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Huang, H. Guo, B. Li, J. Alloys Compd. 720, 29–38 (2017)

    Article  CAS  Google Scholar 

  2. L. Zhang, Z. Sheng, Z. Hao, Z. **a, G.H. Pan, Y. Luo, H. Wu, J. Zhang, J. Mater. Chem. C. 6, 4967–4976 (2018)

    Article  CAS  Google Scholar 

  3. J. Zhou, X. Huang, J. You, B. Wang, H. Chen, Q. Wu, Ceram. Int. 45, 13832–13837 (2019)

    Article  CAS  Google Scholar 

  4. L.L. Zhang, J.H. Zhang, X. Zhang, Z.D. Hao, G.H. Pan, H.J. Wu, J. Lumin. 180, 158–162 (2016)

    Article  CAS  Google Scholar 

  5. X. Huang, B. Li, H. Guo, D. Chen, Dye. Pigment. 143, 86–94 (2017)

    Article  CAS  Google Scholar 

  6. Z.Y. Wang, B.L. Shen, K.H. Yu, Z. Yang, R.L. Zheng, E.T. Hu, J.J. Zheng, W. Wei, J. Alloys Compd. 791, 833–838 (2019)

    Article  CAS  Google Scholar 

  7. M. Dalal, S. Chahar, J. Dalal, R. Devi, D. Kumar, S. Devi, V. Taxak, A. Khatkar, M. Kumar, S. Khatkar, Ceram. Int. 44, 10531–10538 (2018)

    Article  CAS  Google Scholar 

  8. L. Kai, M. Shang, H. Lian, J. Lin, J. Mater. Chem. C. 4, 5507–5530 (2016)

    Article  Google Scholar 

  9. A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli, U.K. Ghorai, J. Mater. Sci. 30, 6311–6321 (2019)

    CAS  Google Scholar 

  10. Y. Wu, Z. Li, H. Mao, Ceram. Int. 44, 10015–10019 (2018)

    Article  CAS  Google Scholar 

  11. B. Samanta, A.K. Dey, P. Bhaumik, S. Manna, A. Halder, D. Jana, U.K. Ghorai, J. Mater. Sci. 30, 1068–1075 (2019)

    CAS  Google Scholar 

  12. J. Sarkar, S. Mondal, S. Panja, I. Dey, A. Sarkar, U.K. Ghorai, Mater. Res. Bull. 112, 314–322 (2019)

    Article  CAS  Google Scholar 

  13. R. Cao, X. Wang, Y. Jiao, X. Ouyang, S. Guo, P. Liu, H. Ao, C. Cao, J. Lumin. 212, 23–28 (2019)

    Article  CAS  Google Scholar 

  14. Z. Lu, L. Weng, S. Song, P. Zhang, Q. Hou, X. Ren, J. Sol-Gel. Sci. Technol. 62, 160–169 (2012)

    Article  CAS  Google Scholar 

  15. R.E. Rojas-Hernandez, L.F. Santos, M.A. Rui, J. Lumin. 197, 180–186 (2018)

    Article  CAS  Google Scholar 

  16. S.H. Kwon, B.K. Moon, B.C. Choi, J.H. Jeong, J.H. Kim, J. Korean Phys. Soc. 68, 363–367 (2016)

    Article  CAS  Google Scholar 

  17. A.F. Reid, A.E. Ringwood, J. Solid State Chem. 1, 6–9 (1969)

    Article  CAS  Google Scholar 

  18. W. Dai, J. Am. Ceram. Soc. 97, 2531–2538 (2014)

    Article  CAS  Google Scholar 

  19. C. Jian, Y. Liu, H. Liu, D. Hao, M. Fang, Z. Huang, Opt. Mater. 42, 80–86 (2015)

    Article  Google Scholar 

  20. P. Ma, Y. Bo, S. Ye, K. Zheng, Y. Wang, C. Xu, H. Zou, Y. Song, J. Alloys Compd. 714, 627–635 (2017)

    Article  CAS  Google Scholar 

  21. Z. He, X.Y. Sun, J.X. Teng, X. Gu, J. Mater. Sci. 29, 1–5 (2018)

    CAS  Google Scholar 

  22. R. Rüdel, F. Ziteferenczy, J. Physiol. 290, 317–330 (1979)

    Article  Google Scholar 

  23. Q. Wang, M. **e, X. Min, Z. Huang, Y.g. Liu, X. Wu, M. Fang, Chem. Phys. Lett. 727, 72–77 (2019)

    Article  CAS  Google Scholar 

  24. C. Yue, S. Liu, D. Zhu, J. Alloys Compd. 783, 19–27 (2019)

    Article  CAS  Google Scholar 

  25. C. Yang, Q. Liu, D. Huang, X. Li, X. Zhang, Z. Bai, X. Wang, J. Mater. Sci. 30, 5544–5554 (2019)

    CAS  Google Scholar 

  26. H. Chen, Y. Wang, Inorg. Chem. 58, 7440–7452 (2019)

    Article  CAS  Google Scholar 

  27. D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)

    Article  CAS  Google Scholar 

  28. G.S. Ofelt, J. Chem. Phys. 38, 2171–2180 (1963)

    Article  CAS  Google Scholar 

  29. Y. Zhang, W. Gong, G. Ning, New J. Chem. 40, 10136–10143 (2016)

    Article  CAS  Google Scholar 

  30. J. Zhong, S. Zhou, D. Chen, J. Li, Z. Ji, Dalton Trans. 47, 8248–8256 (2018)

    Article  CAS  Google Scholar 

  31. Y. Chen, Q. Liu, X. Du, J. Mater. Sci. 52, 1156–1164 (2017)

    Article  CAS  Google Scholar 

  32. C. Yang, Q. Liu, D. Huang, X. Li, X. Zhang, Z. Bai, X. Wang, X. Mi, J. Lumin. 214, 116541 (2019)

    Article  CAS  Google Scholar 

  33. G. Blasse, Phys. Lett. A 28, 444–445 (1968)

    Article  CAS  Google Scholar 

  34. H. You, J. Zhang, G. Hong, H. Zhang, J. Phys. Chem. C 111, 10657–10661 (2007)

    Article  CAS  Google Scholar 

  35. M. Que, Z. Ci, Y. Wang, G. Zhu, S. **n, Y. Shi, Q. Wang, CrystEngComm 15, 6389–6394 (2013)

    Article  CAS  Google Scholar 

  36. R. Reisfeld, E. Greenberg, R. Velapoldi, B. Barnett, J. Chem. Phys. 56, 1698–1705 (1972)

    Article  CAS  Google Scholar 

  37. J. Zhao, S.X. Huang, D. Zhao, J. Chen, Y. Tian, Q. Zong, Y.C. Fan, C.K. Nie, B.Z. Liu, Optik 161, 342–347 (2018)

    Article  CAS  Google Scholar 

  38. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, V.V. Atuchin, J. Alloys Compd. 713, 156–163 (2017)

    Article  CAS  Google Scholar 

  39. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, D.A. Ikonnikov, V.V. Atuchin, Dalton Trans. 45, 15541–15551 (2016)

    Article  CAS  Google Scholar 

  40. X. Zhang, L. Zhou, Q. Pang, J. Shi, M. Gong, J. Phys. Chem. C 118, 7591–7598 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects of the National Natural Science foundation of China (Nos. 51602027, 61307118), of the Education Department of Jilin Province (No. JJKH20181094KJ), and of Jilin province development and reform commission (No. 2019C057-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Li, X., Liu, Q. et al. Tunable white light emission of rare earth ions doped single matrix SrAl2Si2O8 phosphors. J Mater Sci: Mater Electron 31, 1057–1064 (2020). https://doi.org/10.1007/s10854-019-02617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02617-x

Navigation