Log in

Riparian Zone Assessment and Management: an Integrated Review Using Geospatial Technology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Riparian zones act as ecological engineers through stream bank stabilization, pollutant buffering, energy provision to food webs, and groundwater recharge. In the ongoing situation of declining river water quality and global environmental changes, an integrated strategy involving aspects of riparian zone monitoring and management is essential for policy-making and socio-economic services. To address this, a review of papers and policies from 1980 to 2023 is conducted to identify existing technologies and their gaps. 298 articles were reviewed to understand riparian habitats and their ecological function. Analysis shows that field-based monitoring approaches have considerable limitations, including increased labor costs, and methodologies that result in ineffective riparian zone management. These issues can be overcome using geospatial technologies due to their high-quality and long-term inventories and ease of map updates. Unmanned aerial vehicles are widely used for low-cost monitoring in recent times. The result shows that there is no policy framework specifically addressing riparian zone management across the South Asian region which is home to the world’s largest population. Riparian buffer width requires attention across all stakeholders which are missing in the South Asian region and a few other countries across the globe. The authors suggest the use of buffer width consisting of Vetiver grasses of at least 5 m used in conjunction with woody vegetation of a 25-m filter strip. Strategies from the USA and Australia can also show the path towards the riparian zone sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ADCP:

Acoustic Doppler current profiling

ALS:

Aerial laser scanning

ARCH:

Arches National Park

ASTER:

Advanced Spaceborne Thermal Emission and Reflection Radiometer

AUV:

Autonomous underwater vehicles

BMPs:

Best management plans

CBD:

Convention on biological diversity

CRP:

Conservation reserve program

CRZ:

Coastal regulation zone

DTS:

Distributed temperature sensing

E-flows:

Environmental flows

ERT:

Electric resistivity tomography

EQIP:

Environmental Quality Incentive Program

GIM:

Green India Mission

GIS:

Geographic Information Systems

GNSS:

Global Navigation Satellite System

GP:

Genetic programming

IMU:

Inertial measurement unit

IoT:

Internet of Things

LP:

Landsat program

LULC:

Land use and land cover

MBES:

Multibeam echo sounding

MMCR:

Minor mineral concession rules

NASA:

National Aeronautics and Space Administration

NAPCC:

National Action Plan on Climate Change

NCPN:

Northern Colorado Plateau Network

NRCD:

National River Conservation Directorate

NWM:

National Water Mission

PES:

Payment for ecosystem services

OSWPs:

Off-stream watering points

QBR:

Qualitat del Bosc de Ribera

RAPID:

Riparian aerial photographic inventory of disturbance

RARC:

Rapid appraisal of riparian condition

RBS:

Riparian buffer strips

RipZET:

Riparian Zone Estimator Tool

RS:

Remote sensing

RSQI:

Riparian Strip Quality Index

SCPN:

Southern Colorado Plateau Network

SDG:

Sustainable development goal

SERCON:

System for evaluating rivers for conservation

TLS:

Terrestrial laser scanning

TRAC:

Tropical rapid appraisal of riparian condition

UAV:

Unmanned aerial vehicle

UNESCO MAB:

United Nations Educational, Scientific and Cultural Organization Man and Biosphere Programme

USGA:

United States Geological Survey

USV:

Unmanned surface vehicles

References

  • Ackerly, D. (2012). Future climate scenarios for California: Freezing isoclines, novel climates, and climatic resilience of California’s protected areas. https://escholarship.org/uc/item/8cc330xg

  • Adams, K., Harrop, B., James, M., & Marks, J. (2011). Riparian vegetation and water quality monitoring.

    Google Scholar 

  • Agouridis, C. T., Workman, S. R., Warner, R. C., & Jennings, G. D. (2005). Livestock grazing management impacts on stream water quality: A review. JAWRA Journal of the American Water Resources Association, 41(3), 591–606. https://doi.org/10.1111/j.1752-1688.2005.tb03757.x

    Article  Google Scholar 

  • Ahmad, F. (2021). A needs-based approach to groundwater management law and policy. In S. A. Khan, T. G. Puthucherril, & S. R. Paul (Eds.), Groundwater law and management in India: From an Elitist to an Egalitarian paradigm (pp. 327–336). Springer. https://doi.org/10.1007/978-981-16-2617-3_23

    Chapter  Google Scholar 

  • Alarcon, G. G., Fantini, A. C., Salvador, C. H., & Farley, J. (2017). Additionality is in detail: Farmers’ choices regarding payment for ecosystem services programs in the Atlantic forest, Brazil. Journal of Rural Studies, 54, 177–186. https://doi.org/10.1016/j.jrurstud.2017.06.008

    Article  Google Scholar 

  • Albani, D., Nardi, D., & Trianni, V. (2017). Field coverage and weed map** by UAV swarms. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, 4319–4325. https://doi.org/10.1109/IROS.2017.8206296

    Article  Google Scholar 

  • Alemu, T., Bahrndorff, S., Hundera, K., Alemayehu, E., & Ambelu, A. (2017). Effect of riparian land use on environmental conditions and riparian vegetation in the east African highland streams. Limnologica, 66, 1–11. https://doi.org/10.1016/j.limno.2017.07.001

    Article  CAS  Google Scholar 

  • Allan, J. D., Castillo, M. M., & Capps, K. A. (2020). Stream ecology: Structure and function of running waters. Springer Nature.

    Google Scholar 

  • Allen, H. H., & Leech, J. R. (1997). Bioengineering for streambank erosion control. In Report 1—Guidelines. Army engineer waterways experiment station. https://apps.dtic.mil/sti/citations/ADA326294

    Google Scholar 

  • Antunes, P., Kallis, G., Videira, N., & Santos, R. (2009). Participation and evaluation for sustainable river basin governance. Ecological Economics, 68(4), 931–939. https://doi.org/10.1016/j.ecolecon.2008.12.004

    Article  Google Scholar 

  • Arizpe, D., Mendes, A., & Rabaça, J. E. (2008). Sustainable Riparian zones—A management guide. Generalitat Valenciana. https://dspace.uevora.pt/rdpc/handle/10174/6864

    Google Scholar 

  • Armstrong, R. A., & Singh, H. (2012). 24—Mesophotic coral reefs of the Puerto Rico shelf. In P. T. Harris & E. K. Baker (Eds.), Seafloor geomorphology as benthic habitat (pp. 365–374). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00024-4

    Chapter  Google Scholar 

  • Arnell, N. W. (2003). Effects of IPCC SRES* emissions scenarios on river runoff: A global perspective. Hydrology and Earth System Sciences, 7(5), 619–641. https://doi.org/10.5194/hess-7-619-2003

    Article  Google Scholar 

  • Ashish, S., Kundapura, S., & Kaliveeran, V. (2021). Hydrological modeling of stream flow over Netravathi River basin. In M. C. Narasimhan, V. George, G. Udayakumar, & A. Kumar (Eds.), Trends in civil engineering and challenges for sustainability (pp. 695–713). Springer. https://doi.org/10.1007/978-981-15-6828-2_52

    Chapter  Google Scholar 

  • Atkinson, S. F., & Lake, M. C. (2020). Prioritizing riparian corridors for ecosystem restoration in urbanizing watersheds. Peer J, 8, e8174. https://doi.org/10.7717/peerj.8174

    Article  Google Scholar 

  • Bączyk, A., Wagner, M., Okruszko, T., & Grygoruk, M. (2018). Influence of technical maintenance measures on ecological status of agricultural lowland rivers – systematic review and implications for river management. Science of the Total Environment, 627, 189–199. https://doi.org/10.1016/j.scitotenv.2018.01.235

    Article  CAS  Google Scholar 

  • Bailey, D. W., & Brown, J. R. (2011). Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands. Rangeland Ecology & Management, 64(1), 1–9. https://doi.org/10.2111/REM-D-09-00184.1

    Article  Google Scholar 

  • Barzan, F. R., Bellis, L. M., & Dardanelli, S. (2021). Livestock grazing constrains bird abundance and species richness: A global meta-analysis. Basic and Applied Ecology, 56, 289–298.

    Article  Google Scholar 

  • Batbayar, G., Pfeiffer, M., von Tümpling, W., Kappas, M., & Karthe, D. (2017). Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environmental Monitoring and Assessment, 189(8), 1–28.

    Article  CAS  Google Scholar 

  • Beater, M. M. T., Garner, R. D., & Witkowski, E. T. F. (2008). Impacts of clearing invasive alien plants from 1995 to 2005 on vegetation structure, invasion intensity and ground cover in a temperate to subtropical riparian ecosystem. South African Journal of Botany, 74(3), 495–507. https://doi.org/10.1016/j.sajb.2008.01.174

    Article  Google Scholar 

  • Belletti, B., Rinaldi, M., Buijse, A. D., Gurnell, A. M., & Mosselman, E. (2015). A review of assessment methods for river hydromorphology. Environmental Earth Sciences, 73(5), 2079–2100. https://doi.org/10.1007/s12665-014-3558-1

    Article  Google Scholar 

  • Bentrup, G. (1998). The practical streambank bioengineering guide: User’s guide for natural streambank stabilization techniques in the arid and semi-arid Great Basin and Intermountain West. USDA Natural Resources Conservation Service.

    Google Scholar 

  • Berkmueller, K., & Mukherjee, S. (1989). Buffer zones in the service of ecodevelopment. Tigerpaper (FAO). https://scholar.google.com/scholar_lookup?title=Buffer+zones+in+the+service+of+ecodevelopment&author=Berkmueller%2C+K.&publication_year=1989

  • Bhatia, R. (2020). Riparian governance in South Asia: Many rivers to cross.

    Google Scholar 

  • Bhatti, N., Streets, D. G., & Foell, W. K. (1992). Acid rain in Asia. Environmental Management, 16(4), 541–562.

    Article  Google Scholar 

  • Biedenharn, D. S., Elliott, C. M., & Watson, C. C. (1997). The WES stream investigation and streambank stabilization handbook. https://erdclibrary.erdc.dren.mil/jspui/handle/11681/4795

  • Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods. In Y. Rubin & S. S. Hubbard (Eds.), Hydrogeophysics (pp. 129–156). Springer. https://doi.org/10.1007/1-4020-3102-5_5

    Chapter  Google Scholar 

  • Blair, J. B., Rabine, D. L., & Hofton, M. A. (1999). The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for map** vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 115–122. https://doi.org/10.1016/S0924-2716(99)00002-7

    Article  Google Scholar 

  • Boisjolie, B. A., Santelmann, M. V., Flitcroft, R. L., & Duncan, S. L. (2017). Legal ecotones: A comparative analysis of riparian policy protection in the Oregon Coast Range, USA. Journal of Environmental Management, 197, 206–220. https://doi.org/10.1016/j.jenvman.2017.03.075

    Article  Google Scholar 

  • Boon, P. J., Wilkinson, J., & Martin, J. (1998). The application of SERCON (System for Evaluating Rivers for Conservation) to a selection of rivers in Britain. Aquatic Conservation: Marine and Freshwater Ecosystems, 8(4), 597–616. https://doi.org/10.1002/(SICI)1099-0755(199807/08)8:4<597::AID-AQC277>3.0.CO;2-N

    Article  Google Scholar 

  • Boone, C., Dyzenhaus, A., Ouma, S., Owino, J. K., Gateri, C. W., Gargule, A., Klopp, J., & Manji, A. (2016). Land politics under Kenya’s new constitution: Counties, devolution, and the National Land Commission (Working Paper No. 16–178). Working Paper Series https://www.econstor.eu/handle/10419/224804

    Google Scholar 

  • Bottom, D., Simenstad, C., Burke, J., Baptista, A., Jay, D., Jone, K., Casillas, E., & Schiewe, M. (2005). Salmon at river’s end: The role of the estuary in the decline and recovery of Columbia River salmon. Civil and Environmental Engineering Faculty Publications and Presentations. https://pdxscholar.library.pdx.edu/cengin_fac/24

  • Bourgeois, B., Vanasse, A., Rivest, D., & Poulin, M. (2016). Establishment success of trees planted in riparian buffer zones along an agricultural intensification gradient. Agriculture, Ecosystems & Environment, 222, 60–66. https://doi.org/10.1016/j.agee.2016.01.013

    Article  Google Scholar 

  • Bowen, Z. H., & Waltermire, R. G. (2002). Evaluation of light detection and ranging (lidar) for measuring river corridor topography. JAWRA Journal of the American Water Resources Association, 38(1), 33–41. https://doi.org/10.1111/j.1752-1688.2002.tb01532.x

    Article  Google Scholar 

  • Braatz, S., Davis, G., Shen, S., & Rees, C. (1992). Conserving biological diversity: A strategy for protected areas in the Asia-Pacific region. World Bank technical paper. International Bank for Reconstruction and Development, Washington, DC.

    Google Scholar 

  • Briggs, M. K. (1996). Riparian ecosystem recovery in arid lands: Strategies and references. University of Arizona Press.

    Google Scholar 

  • Briske, D. D., Derner, J. D., Brown, J. R., Fuhlendorf, S. D., Teague, W. R., Havstad, K. M., Gillen, R. L., Ash, A. J., & Willms, W. D. (2008). Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangeland Ecology & Management, 61(1), 3–17. https://doi.org/10.2111/06-159R.1

    Article  Google Scholar 

  • Broadmeadow, S., & Nisbet, T. R. (2004). The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrology and Earth System Sciences, 8(3), 286–305. https://doi.org/10.5194/hess-8-286-2004

    Article  Google Scholar 

  • Brock, T. C., Arts, G. H., Maltby, L., & Van den Brink, P. J. (2006). Aquatic risks of pesticides, ecological protection goals, and common aims in European union legislation. Integrated Environmental Assessment and Management, 2(4), e20–e46. https://doi.org/10.1002/ieam.5630020402

    Article  Google Scholar 

  • Brothers, D. S., Conrad, J. E., Maier, K. L., Paull, C. K., McGann, M., & Caress, D. W. (2015). The Palos Verdes Fault offshore Southern California: Late Pleistocene to present tectonic geomorphology, seascape evolution, and slip rate estimate based on AUV and ROV surveys. Journal of Geophysical Research: Solid Earth, 120(7), 4734–4758. https://doi.org/10.1002/2015JB011938

    Article  Google Scholar 

  • Brueggen-Boman, T. R. (2012). Effect of implementing best management practices on water and habitat quality in the Upper Strawberry River Watershed, Fulton County, Arkansas, USA [Ph.D., Arkansas State University]. ProQuest dissertations and theses. https://www.proquest.com/docview/1252670838/abstract/9ACE0EC5AB904A3FPQ/1

  • Buckley, C., Hynes, S., & Mechan, S. (2012). Supply of an ecosystem service—farmers’ willingness to adopt riparian buffer zones in agricultural catchments. Environmental Science & Policy, 24, 101–109. https://doi.org/10.1016/j.envsci.2012.07.022

    Article  Google Scholar 

  • Buffin-Bélanger, T., Biron, P. M., Larocque, M., Demers, S., Olsen, T., Choné, G., Ouellet, M.-A., Cloutier, C.-A., Desjarlais, C., & Eyquem, J. (2015). Freedom space for rivers: An economically viable river management concept in a changing climate. Geomorphology, 251, 137–148. https://doi.org/10.1016/j.geomorph.2015.05.013

    Article  Google Scholar 

  • Busato, L., Boaga, J., Perri, M. T., Majone, B., Bellin, A., & Cassiani, G. (2019). Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study. Science of the Total Environment, 648, 1105–1120. https://doi.org/10.1016/j.scitotenv.2018.08.179

    Article  CAS  Google Scholar 

  • Cao, Y., Li, R., Zhou, S., Song, L., Quan, R., & Hu, H. (2020). Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China. Journal of Ethnobiology and Ethnomedicine, 16(1), 1–23.

    Article  Google Scholar 

  • Capon, S. J., Chambers, L. E., Mac Nally, R., Naiman, R. J., Davies, P., Marshall, N., Pittock, J., Reid, M., Capon, T., Douglas, M., Catford, J., Baldwin, D. S., Stewardson, M., Roberts, J., Parsons, M., & Williams, S. E. (2013). Riparian ecosystems in the 21st century: Hotspots for climate change adaptation? Ecosystems, 16(3), 359–381. https://doi.org/10.1007/s10021-013-9656-1

    Article  Google Scholar 

  • Cardinali, A., Carletti, P., Nardi, S., & Zanin, G. (2014). Design of riparian buffer strips affects soil quality parameters. Applied Soil Ecology, 80, 67–76. https://doi.org/10.1016/j.apsoil.2014.04.003

    Article  Google Scholar 

  • Casanova, M. T. (2007). The effect of grazing on freshwater wetlands in Australia. A review of literature with particular emphasis on the Macquarie marshes and Gwydir wetlands. Charophyte Services, Lake Bolac.

    Google Scholar 

  • Casotti, C. G., Kiffer, W. P., Costa, L. C., Rangel, J. V., Casagrande, L. C., & Moretti, M. S. (2015). Assessing the importance of riparian zones conservation for leaf decomposition in streams. Natureza & Conservação, 13(2), 178–182. https://doi.org/10.1016/j.ncon.2015.11.011

    Article  Google Scholar 

  • Castro-López, D., Guerra-Cobián, V., & Prat, N. (2019). The role of riparian vegetation in the evaluation of ecosystem health: The case of semiarid conditions in Northern Mexico. River Research and Applications, 35(1), 48–59. https://doi.org/10.1002/rra.3383

    Article  Google Scholar 

  • Chellaiah, D., & Yule, C. M. (2018). Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica, 69, 72–80. https://doi.org/10.1016/j.limno.2017.11.007

    Article  CAS  Google Scholar 

  • Chen, C., Wu, S., Meurk, C. D., Ma, M., Zhao, J., Lv, M., & Tong, X. (2017). Effects of local and landscape factors on exotic vegetation in the riparian zone of a regulated river: Implications for reservoir conservation. Landscape and Urban Planning, 157, 45–55. https://doi.org/10.1016/j.landurbplan.2016.06.003

    Article  Google Scholar 

  • Chinnasamy, P., & Parikh, A. (2021). Remote sensing-based assessment of Coastal Regulation Zones in India: A case study of Mumbai, India. Environment, Development and Sustainability, 23, 7931–7950.

    Article  Google Scholar 

  • Choi, B., Dewey, J. C., Hatten, J. A., Ezell, A. W., & Fan, Z. (2012). Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams. Forest Ecology and Management, 281, 1–11. https://doi.org/10.1016/j.foreco.2012.06.021

    Article  Google Scholar 

  • Cirmo, C. P., & McDonnell, J. J. (1997). Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: A review. Journal of Hydrology, 199(1), 88–120. https://doi.org/10.1016/S0022-1694(96)03286-6

    Article  CAS  Google Scholar 

  • Clary, C. R., Redmon, L., Gentry, T., Wagner, K., & Lyons, R. (2016). Nonriparian shade as a water quality best management practice for grazing-lands: A case study. Rangelands, 38(3), 129–137. https://doi.org/10.1016/j.rala.2015.12.006

    Article  Google Scholar 

  • Cobby, D. M., Mason, D. C., & Davenport, I. J. (2001). Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS Journal of Photogrammetry and Remote Sensing, 56(2), 121–138. https://doi.org/10.1016/S0924-2716(01)00039-9

    Article  Google Scholar 

  • Cole, L. J., Stockan, J., & Helliwell, R. (2020). Managing riparian buffer strips to optimise ecosystem services: A review. Agriculture, Ecosystems & Environment, 296, 106891.

    Article  CAS  Google Scholar 

  • Coleman, J. M. (1969). Brahmaputra river: Channel processes and sedimentation. Sedimentary Geology, 3(2), 129–239. https://doi.org/10.1016/0037-0738(69)90010-4

    Article  Google Scholar 

  • Collins, K., Blackmore, C., Morris, D., & Watson, D. (2007). A systemic approach to managing multiple perspectives and stakeholding in water catchments: Some findings from three UK case studies. Environmental Science & Policy, 10(6), 564–574. https://doi.org/10.1016/j.envsci.2006.12.005

    Article  Google Scholar 

  • Colwell, S. R., & Hix, D. M. (2008). Adaptation of the QBR index for use in riparian forests of central Ohio. In D. F. Jacobs & C. H. Michler (Eds.), 2008 Proceedings, 16th Central Hardwood Forest Conference; 2008 April 8-9; West Lafayette, IN. Gen. Tech. Rep. NRS-P-24 (pp. 331–340) http://www.fs.usda.gov/treesearch/pubs/14038

    Google Scholar 

  • Colwell, S. (2007). The application of the QBR index to the Riparian forests of Central Ohio streams [Thesis, The Ohio State University]. https://kb.osu.edu/handle/1811/24509

  • Commission, S. P. (2001). Draft Annual Plan 2001-2002. Tamil Nadu. http://14.139.60.153/handle/123456789/11449

  • Congalton, R. G., Birch, K., Jones, R., & Schriever, J. (2002). Evaluating remotely sensed techniques for map** riparian vegetation. Computers and Electronics in Agriculture, 37(1), 113–126. https://doi.org/10.1016/S0168-1699(02)00108-4

    Article  Google Scholar 

  • Council National Research ; Division on Earth and Life Studies; Water Science and Technology Board; Board on Environmental Studies and Toxicology; Committee on Riparian Zone Functioning and Strategies for Management. (2002). Riparian areas: Functions and strategies for management. National Academies Press.

    Google Scholar 

  • Council, N. R., Studies, D. on E. and L., Toxicology, B. on E. S. and, Board, W. S. and T., & Management, C. on R. Z. F. and S. for. (2002b). Riparian areas: functions and strategies for management. National Academies Press.

  • Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61(4), 1031–1054. https://doi.org/10.1111/sed.12084

    Article  Google Scholar 

  • Da Ponte, E., Kuenzer, C., Parker, A., Rodas, O., Oppelt, N., & Fleckenstein, M. (2017). Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosystem Services, 24, 200–212. https://doi.org/10.1016/j.ecoser.2017.03.009

    Article  Google Scholar 

  • da Silva, R. L., Leite, M. F. A., Muniz, F. H., de Souza, L. A. G., de Moraes, F. H. R., & Gehring, C. (2017). Degradation impacts on riparian forests of the lower Mearim river, eastern periphery of Amazonia. Forest Ecology and Management, 402, 92–101. https://doi.org/10.1016/j.foreco.2017.07.019

    Article  Google Scholar 

  • Daniele, M., & Sabrina, S. (2012). De Pellegrini Francesco, and Chlamtac Imrich. Internet of Things: Vision, applications and research challenges. Ad Hoc Networks, 10, 1497–1516.

    Article  Google Scholar 

  • Dara, R., Kettridge, N., Rivett, M. O., Krause, S., & Gomez-Ortiz, D. (2019). Identification of floodplain and riverbed sediment heterogeneity in a meandering UK lowland stream by ground penetrating radar. Journal of Applied Geophysics, 171, 103863.

    Article  Google Scholar 

  • Davis, J. W. (1982). Livestock vs. Riparian habitat management—There are solutions. In J. M. Peek & P. D. Dalke (Eds.), Proceedings of the wildlife-livestock relationships symposium : Held at Coeur d’Alene, Idaho, April 20-22, 1981 / Sponsored by Department of Wildlife Resources. University of Idaho. https://scholar.google.com/scholar_lookup?title=Livestock+vs.+riparian+habitat+management%2D%2Dthere+are+solutions&author=Davis%2C+J.W.&publication_year=1982

    Google Scholar 

  • de Sosa, L. L., Glanville, H. C., Marshall, M. R., Prysor Williams, A., & Jones, D. L. (2018a). Quantifying the contribution of riparian soils to the provision of ecosystem services. The Science of the Total Environment, 624, 807–819. https://doi.org/10.1016/j.scitotenv.2017.12.179

    Article  CAS  Google Scholar 

  • de Sosa, L. L., Williams, A. P., Orr, H. G., & Jones, D. L. (2018b). Riparian research and legislation, are they working towards the same common goals? A UK case study. Environmental Science & Policy, 82, 126–135. https://doi.org/10.1016/j.envsci.2018.01.023

    Article  Google Scholar 

  • del Tánago, M. G., & de Lastra, D. G. J. (2011). Riparian Quality Index (RQI): A methodology for characterising and assessing the environmental conditions of riparian zones. Limnetica, 30(2), 235–254.

    Article  Google Scholar 

  • Dial, G., Bowen, H., Gerlach, F., Grodecki, J., & Oleszczuk, R. (2003). IKONOS satellite, imagery, and products. Remote Sensing of Environment, 88(1), 23–36. https://doi.org/10.1016/j.rse.2003.08.014

    Article  Google Scholar 

  • Dixon, I., Douglas, M., Dowe, J., Burrows, D., & Townsend, S. (2005). A rapid method for assessing the condition of Riparian zones in the wet/dry tropics of Northern Australia: 4th Australian Stream Management Conference. In Proceedings of the 4th Australian Stream Management Conference.

    Google Scholar 

  • du Québec, G. (1987). Loi sur la qualité de l’environnement: Politique des rives, du littoral et des plaines inondables. Gouvernement Du Québec.

    Google Scholar 

  • Dudgeon, D. (2000). Large-scale hydrological changes in tropical Asia: Prospects for riverine biodiversity: The construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their associated wetlands. BioScience, 50(9), 793–806.

    Article  Google Scholar 

  • Dufour, S., Rodríguez-González, P. M., & Laslier, M. (2019). Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world. Science of the Total Environment, 653, 1168–1185. https://doi.org/10.1016/j.scitotenv.2018.10.383

    Article  CAS  Google Scholar 

  • Dufour, S., Muller, E., Straatsma, M., & Corgne, S. (2012). Image utilisation for the study and management of riparian vegetation: Overview and applications. In Fluvial remote sensing for science and management (pp. 215–239). John Wiley & Sons. https://doi.org/10.1002/9781119940791.ch10

    Chapter  Google Scholar 

  • Dukhovny, V. A., & Galina, S. (2011). Water and food security in Central Asia. Springer.

    Book  Google Scholar 

  • Duplaix, N., & Savage, M. (2021). The global otter conservation strategy. eScholarship. University of California.

    Google Scholar 

  • Dwire, K. A., Mellmann-Brown, S., & Gurrieri, J. T. (2018). Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA. Climate Services, 10, 44–52. https://doi.org/10.1016/j.cliser.2017.10.002

    Article  Google Scholar 

  • Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H.-J., Tiede, D., & Seifert, T. (2022). UAV-based forest health monitoring: A systematic review. Remote Sensing, 14(13), 3205.

    Article  Google Scholar 

  • Euler, J., & Heldt, S. (2018). From information to participation and self-organization: Visions for European river basin management. Science of the Total Environment, 621, 905–914. https://doi.org/10.1016/j.scitotenv.2017.11.072

    Article  CAS  Google Scholar 

  • Evangelista, P., Young, N., Vorster, T., West, A., Hatcher, E., Woodward, B., Anderson, R., & Girma, R. (2018). Map** native and non-native riparian vegetation in the Colorado River watershed. In Riparian habitat and invasive species in the Colorado River basin – Data collection. https://Hdl.Handle.Net/10217/185829. https://mountainscholar.org/handle/10217/187177

    Google Scholar 

  • Extension, T. C. (2004). A Texas field guide to evaluating rangeland stream and riparian health. Texas Cooperative Extension, Texas A & M University System.

    Google Scholar 

  • Fairbairn, W. A. (1967). Erosion in the River Findhorn Valley. Scottish Geographical Magazine, 83(1), 46–52. https://doi.org/10.1080/00369226708736034

    Article  Google Scholar 

  • Feld, C. K., Fernandes, M. R., Ferreira, M. T., Hering, D., Ormerod, S. J., Venohr, M., & Gutiérrez-Cánovas, C. (2018). Evaluating riparian solutions to multiple stressor problems in river ecosystems—a conceptual study. Water Research, 139, 381–394. https://doi.org/10.1016/j.watres.2018.04.014

    Article  CAS  Google Scholar 

  • Fernandes, M. R., Aguiar, F. C., & Ferreira, M. T. (2011). Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape and Urban Planning, 99(2), 166–177. https://doi.org/10.1016/j.landurbplan.2010.11.001

    Article  Google Scholar 

  • Fernandes, M. R., Aguiar, F. C., Ferreira, M. T., & Pereira, J. M. C. (2013). Spectral separability of riparian forests from small and medium-sized rivers across a latitudinal gradient using multispectral imagery. International Journal of Remote Sensing, 34, 2375–2401. https://doi.org/10.1080/01431161.2012.744491

    Article  Google Scholar 

  • Fierro, P., Bertrán, C., Tapia, J., Hauenstein, E., Peña-Cortés, F., Vergara, C., Cerna, C., & Vargas-Chacoff, L. (2017). Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment, 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197

    Article  CAS  Google Scholar 

  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: A new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421–430. https://doi.org/10.1002/esp.3366

    Article  Google Scholar 

  • Fryirs, K., Spink, A., & Brierley, G. (2009). Post-European settlement response gradients of river sensitivity and recovery across the upper Hunter catchment. Australia. Earth Surface Processes and Landforms, 34(7), 897–918. https://doi.org/10.1002/esp.1771

    Article  Google Scholar 

  • Fu, B., & Burgher, I. (2015). Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. Journal of Arid Environments, 113, 59–68. https://doi.org/10.1016/j.jaridenv.2014.09.010

    Article  Google Scholar 

  • Fu, B., Li, Y., Wang, Y., Zhang, B., Yin, S., Zhu, H., & **ng, Z. (2016). Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecological Indicators, 69, 873–881. https://doi.org/10.1016/j.ecolind.2016.05.048

    Article  Google Scholar 

  • Fu, B., Li, Y., Wang, Y., Campbell, A., Zhang, B., Yin, S., Zhu, H., **ng, Z., & **, X. (2017). Evaluation of riparian condition of Songhua River by integration of remote sensing and field measurements. Scientific Reports, 7(1), 2565. https://doi.org/10.1038/s41598-017-02772-3

    Article  CAS  Google Scholar 

  • Galatowitsch, S., & Richardson, D. M. (2005). Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape. South Africa. Biological Conservation, 122(4), 509–521. https://doi.org/10.1016/j.biocon.2004.09.008

    Article  Google Scholar 

  • Gallant, A. L., Euliss, N. H., Jr., & Browning, Z. (2014). Map** large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of National Pollination Services. PLoS One, 9(6), e99268. https://doi.org/10.1371/journal.pone.0099268

    Article  CAS  Google Scholar 

  • Gardiner, D. J. (1989). Introduction to Raman scattering. In D. J. Gardiner & P. R. Graves (Eds.), Practical Raman spectroscopy (pp. 1–12). Springer. https://doi.org/10.1007/978-3-642-74040-4_1

    Chapter  Google Scholar 

  • Gardner, R. C., & Davidson, N. C. (2011). The Ramsar convention. In B. A. LePage (Ed.), Wetlands: Integrating multidisciplinary concepts (pp. 189–203). Springer. https://doi.org/10.1007/978-94-007-0551-7_11

    Chapter  Google Scholar 

  • Garrastazú, M. C., Mendonça, S. D., Horokoski, T. T., Cardoso, D. J., Rosot, M. A. D., Nimmo, E. R., & Lacerda, A. E. B. (2015). Carbon sequestration and riparian zones: Assessing the impacts of changing regulatory practices in Southern Brazil. Land Use Policy, 42, 329–339. https://doi.org/10.1016/j.landusepol.2014.08.003

    Article  Google Scholar 

  • Goetz, S. J. (2006). Remote sensing of riparian buffers: Past progress and future prospects. JAWRA Journal of the American Water Resources Association, 42(1), 133–143. https://doi.org/10.1111/j.1752-1688.2006.tb03829.x

    Article  Google Scholar 

  • González, E., Felipe-Lucia, M. R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G., & Sher, A. A. (2017). Integrative conservation of riparian zones. Biological Conservation, 211, 20–29. https://doi.org/10.1016/j.biocon.2016.10.035

    Article  Google Scholar 

  • González del Tánago, M., Gurnell, A. M., Belletti, B., & García de Jalón, D. (2016). Indicators of river system hydromorphological character and dynamics: Understanding current conditions and guiding sustainable river management. Aquatic Sciences. https://doi.org/10.1007/s00027-015-0429-0

    Article  Google Scholar 

  • González del Tánago, M., Martínez-Fernández, V., Aguiar, F. C., Bertoldi, W., Dufour, S., García de Jalón, D., Garófano-Gómez, V., Mandzukovski, D., & Rodríguez-González, P. M. (2021). Improving river hydromorphological assessment through better integration of riparian vegetation scientific evidence and guidelines. Journal of Environmental Management, 292, 112730. https://doi.org/10.1016/j.jenvman.2021.112730

    Article  Google Scholar 

  • Gopal, B., & Chauhan, M. (2007). River Yamuna from source to Delhi: Human impacts and approaches to conservation. Restoring River Yamuna (pp. 45–69)

    Google Scholar 

  • Gordon, L. J., Peterson, G. D., & Bennett, E. M. (2008). Preparing for surprises in the food-water system. Trends in Ecology & Evolution, 23, 211–219.

    Article  Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Gouldson, A., Lopez-Gunn, E., Van Alstine, J., Rees, Y., Davies, M., & Krishnarayan, V. (2008). New alternative and complementary environmental policy instruments and the implementation of the Water Framework Directive. European Environment, 18(6), 359–370. https://doi.org/10.1002/eet.491

    Article  Google Scholar 

  • Grant, G. E. (1988). The RAPID technique: a new method for evaluating downstream effects of forest practices on riparian zones. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station

  • Gregory, S. V., Swanson, F. J., McKee, W. A., & Cummins, K. W. (1991). An ecosystem perspective of riparian zones. BioScience, 41(8), 540–551. https://doi.org/10.2307/1311607

    Article  Google Scholar 

  • Grizzetti, B., Liquete, C., Antunes, P., Carvalho, L., Geamănă, N., Giucă, R., Leone, M., McConnell, S., Preda, E., Santos, R., Turkelboom, F., Vădineanu, A., & Woods, H. (2016). Ecosystem services for water policy: Insights across Europe. Environmental Science & Policy, 66, 179–190. https://doi.org/10.1016/j.envsci.2016.09.006

    Article  Google Scholar 

  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  • Guerry, A. D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G. C., Griffin, R., Ruckelshaus, M., Bateman, I. J., Duraiappah, A., Elmqvist, T., Feldman, M. W., Folke, C., Hoekstra, J., Kareiva, P. M., Keeler, B. L., Li, S., McKenzie, E., Ouyang, Z., Reyers, B., & Vira, B. (2015). Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7348–7355.

    Article  CAS  Google Scholar 

  • Guillozet, P., Smith, K., & Guillozet, K. (2014). The rapid riparian revegetation approach. Ecological Restoration, 32(2), 113–124. https://doi.org/10.3368/er.32.2.113

    Article  Google Scholar 

  • Gupta, N., Rajvanshi, A., & Badola, R. (2017). Climate change and human–wildlife conflicts in the Indian Himalayan biodiversity hotspot. 3.

  • Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Sohlberg, R., Dimiceli, C., & Carroll, M. (2002). Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sensing of Environment, 83(1), 303–319. https://doi.org/10.1016/S0034-4257(02)00079-2

    Article  Google Scholar 

  • Hénault-Ethier, L., Larocque, M., Perron, R., Wiseman, N., & Labrecque, M. (2017). Hydrological heterogeneity in agricultural riparian buffer strips. Journal of Hydrology, 546, 276–288. https://doi.org/10.1016/j.jhydrol.2017.01.001

    Article  CAS  Google Scholar 

  • Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., & Lopez Alvis, J. (2023). Advancing measurements and representations of subsurface heterogeneity and dynamic processes: Towards 4D hydrogeology. Hydrology and Earth System Sciences, 27(1), 255–287.

    Article  Google Scholar 

  • Ho, S., Neng, Q., & Yifei, Y. (2019). The role of ideas in the China-India water dispute. The Chinese Journal of International Politics, 12(2), 263–294.

    Google Scholar 

  • Hoag, J. C., Wyman, S. K., Bentrup, G., Holzworth, L., Ogle, D. G., Carleton, J., Berg, F., & Leinard, B. (2001). Users guide to description, propagation and establishment of wetland plant species and grasses for Riparian areas in the Intermountain West. In Plant Materials Tech. Note WY-5. USDA-National Resource Conservation Service.

    Google Scholar 

  • Hoag, J. C. (2000). Harvesting, propagating,and planting wetland plants. USDA, Natural Resources Conservation Service, Plant Materials Center. http://plantmaterials.nrcs.usda.gov/pubs/idpmcarwproj14.pdf

    Google Scholar 

  • Horak, C. N., Assef, Y. A., & Miserendino, M. L. (2019). Assessing effects of confined animal production systems on water quality, ecological integrity, and macroinvertebrates at small piedmont streams (Patagonia, Argentina). Agricultural Water Management, 216, 242–253. https://doi.org/10.1016/j.agwat.2019.01.026

    Article  Google Scholar 

  • Hossain, A., Krupnik, T. J., Timsina, J., Mahboob, M. G., Chaki, A. K., Farooq, M., Bhatt, R., Fahad, S., & Hasanuzzaman, M. (2020). Agricultural land degradation: Processes and problems undermining future food security. In Environment, climate, plant and vegetation growth (pp. 17–61). Springer.

    Chapter  Google Scholar 

  • Howarth, W. (1989). Water pollution: Improving the legal controls. Journal of Environmental Law, 1(1), 25–37. https://doi.org/10.1093/jel/1.1.25

    Article  Google Scholar 

  • Howden, D. (2009). Continuous swarm surveillance via distributed priority maps. Australian Conference on Artificial Life, 221–231.

  • Huang, K., Zhuang, G., Lin, Y., Wang, Q., Fu, J. S., Zhang, R., Li, J., Deng, C., & Fu, Q. (2012). Impact of anthropogenic emission on air quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival. Atmospheric Chemistry and Physics, 12(23), 11631–11645. https://doi.org/10.5194/acp-12-11631-2012

    Article  CAS  Google Scholar 

  • Hughes, A. O., Tanner, C. C., McKergow, L. A., & Sukias, J. P. S. (2016). Unrestricted dairy cattle grazing of a pastoral headwater wetland and its effect on water quality. Agricultural Water Management, 165, 72–81. https://doi.org/10.1016/j.agwat.2015.11.015

    Article  Google Scholar 

  • Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. BioScience, 45(3), 193–203. https://doi.org/10.2307/1312558

    Article  Google Scholar 

  • Ivits, E., Cherlet, M., Mehl, W., & Sommer, S. (2009). Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets. Ecological Indicators, 9(3), 422–431. https://doi.org/10.1016/j.ecolind.2008.05.013

    Article  Google Scholar 

  • Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Applications, 11(4), 1027–1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2

    Article  Google Scholar 

  • Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., & Malcolm, I. A. (2018). A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Science of the Total Environment, 612, 1543–1558. https://doi.org/10.1016/j.scitotenv.2017.09.010

    Article  CAS  Google Scholar 

  • Jansen, A. (2005). Rapid appraisal of riparian condition: Scaling up from on-ground measurement to remote sensing. Australian Stream Management Conference, 313–319.

  • Johansen, K., Phinn, S., Dixon, I., Douglas, M., & Lowry, J. (2007). Comparison of image and rapid field assessments of riparian zone condition in Australian tropical savannas. Forest Ecology and Management, 240(1), 42–60. https://doi.org/10.1016/j.foreco.2006.12.015

    Article  Google Scholar 

  • Johansen, K., Phinn, S., & Witte, C. (2010). Map** of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: Assessing accuracy and costs. Remote Sensing of Environment, 114(11), 2679–2691. https://doi.org/10.1016/j.rse.2010.06.004

    Article  Google Scholar 

  • Johnson, L., Richards, C., Host, G., & Arthur, J. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37(1), 193–208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x

    Article  CAS  Google Scholar 

  • Kahle, A. B., Palluconi, F. D., Hook, S. J., Realmuto, V. J., & Bothwell, G. (1991). The advanced spaceborne thermal emission and reflectance radiometer (Aster). International Journal of Imaging Systems and Technology, 3(2), 144–156. https://doi.org/10.1002/ima.1850030210

    Article  Google Scholar 

  • Kala, L. D., & Subbarao, P. M. V. (2017). Pine needles as potential energy feedstock: Availability in the Central Himalayan State of Uttarakhand, India. E3S Web of Conferences, 23, 04001. https://doi.org/10.1051/e3sconf/20172304001

    Article  Google Scholar 

  • Kardynal, K. J., Hobson, K. A., Van Wilgenburg, S. L., & Morissette, J. L. (2009). Moving riparian management guidelines towards a natural disturbance model: An example using boreal riparian and shoreline forest bird communities. Forest Ecology and Management, 257(1), 54–65. https://doi.org/10.1016/j.foreco.2008.08.029

    Article  Google Scholar 

  • Karisa, C. (2010). A negotiated framework for rehabilitation of Riparian Zones in Nairobi City: The case of Mathare River Valley (Kenya). http://erepository.uonbi.ac.ke/handle/11295/45770

  • Kasimov, N., Karthe, D., & Chalov, S. (2017). Environmental change in the Selenga River—Lake Baikal Basin. In Regional environmental change (Vol. 17, Issue 7, pp. 1945–1949). Springer.

    Google Scholar 

  • Kauffman, J., & Krueger, W. (1984). Livestock impacts on Riparian ecosystems and streamside management implications. A review. Ecological Impacts of Animal Agriculture Collection. https://www.wellbeingintlstudiesrepository.org/enviaagr/2

  • Kaus, A., Büttner, O., Schäffer, M., Balbar, G., Surenkhorloo, P., & Borchardt, D. (2016). Seasonal home range shifts of the Siberian taimen (Hucho taimen Pallas 1773): Evidence from passive acoustic telemetry in the Onon River and Balj tributary (Amur River basin, Mongolia). International Review of Hydrobiology, 101(5–6), 147–159.

    Article  Google Scholar 

  • Khanal, S., Kc, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), Article 22. https://doi.org/10.3390/rs12223783

  • Kinoshita, R. (1967). An analysis of the movement of flood waters by aerial photography. Journal of the Japan Society of Photogrammetry, 6(1), 1–17. https://doi.org/10.4287/jsprs1962.6.1

    Article  Google Scholar 

  • Klapproth, J. C., & Johnson, J. E. (2009). Understanding the science behind Riparian Forest buffers: Effects on water quality. https://vtechworks.lib.vt.edu/handle/10919/48062

  • Kopp, B. J., Lange, J., & Menzel, L. (2017). Effects of wildfire on runoff generating processes in northern Mongolia. Regional Environmental Change, 17(7), 1951–1963.

    Article  Google Scholar 

  • Kuglerová, L., Ågren, A., Jansson, R., & Laudon, H. (2014). Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. Forest Ecology and Management, 334, 74–84. https://doi.org/10.1016/j.foreco.2014.08.033

    Article  Google Scholar 

  • Kujanová, K., Matoušková, M., & Hošek, Z. (2018). The relationship between river types and land cover in Riparian zones. https://pubag.nal.usda.gov/catalog/6103835

  • Kumar, N., Hazra, K., Nath, C., Praharaj, C., & Singh, U. (2018). Grain legumes for resource conservation and agricultural sustainability in South Asia (pp. 77–107). https://doi.org/10.1007/978-981-13-0253-4_3

    Book  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2019a). Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Applied Energy, 256, 113980.

    Article  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2019b). Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. Journal of Cleaner Production, 232, 1028–1042.

    Article  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2020). Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Conversion and Management, 223, 113267.

    Article  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews, 142, 110833.

    Article  Google Scholar 

  • Kuriqi, A., & Jurasz, J. (2022). Small hydropower plants proliferation and fluvial ecosystem conservation nexus. In Complementarity of Variable Renewable Energy Sources (pp. 503–527). Elsevier.

    Chapter  Google Scholar 

  • Lange, J., Kopp, B. J., Bents, M., & Menzel, L. (2015). Tracing variability of run-off generation in mountainous permafrost of semi-arid north-eastern Mongolia. Hydrological Processes, 29(6), 1046–1055.

    Article  Google Scholar 

  • Le Maitre, D. C., van Wilgen, B. W., Gelderblom, C. M., Bailey, C., Chapman, R. A., & Nel, J. A. (2002). Invasive alien trees and water resources in South Africa: Case studies of the costs and benefits of management. Forest Ecology and Management, 160(1), 143–159. https://doi.org/10.1016/S0378-1127(01)00474-1

    Article  Google Scholar 

  • Lee, M.-B., & Rotenberry, J. T. (2015). Effects of land use on riparian birds in a semiarid region. Journal of Arid Environments, 119, 61–69. https://doi.org/10.1016/j.jaridenv.2015.04.001

    Article  Google Scholar 

  • Lee, P., Smyth, C., & Boutin, S. (2004). Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management, 70(2), 165–180. https://doi.org/10.1016/j.jenvman.2003.11.009

    Article  CAS  Google Scholar 

  • Leimona, B., van Noordwijk, M., de Groot, R., & Leemans, R. (2015). Fairly efficient, efficiently fair: Lessons from designing and testing payment schemes for ecosystem services in Asia. Ecosystem Services, 12, 16–28. https://doi.org/10.1016/j.ecoser.2014.12.012

    Article  Google Scholar 

  • Lejot, J., Delacourt, C., Piégay, H., Fournier, T., Trémélo, M.-L., & Allemand, P. (2007). Very high spatial resolution imagery for channel bathymetry and topography from an unmanned map** controlled platform. Earth Surface Processes and Landforms, 32(11), 1705–1725. https://doi.org/10.1002/esp.1595

    Article  Google Scholar 

  • Leopold, L. B., & Langbein, W. B. (1966). RIVER MEANDERS. Scientific American, 214(6), 60–73.

    Article  Google Scholar 

  • Line, D. E., Harman, W. A., Jennings, G. D., Thompson, E. J., & Osmond, D. L. (2000). Nonpoint-source pollutant load reductions associated with livestock exclusion. Journal of Environmental Quality, 29(6), 1882–1890. https://doi.org/10.2134/jeq2000.00472425002900060022x

    Article  CAS  Google Scholar 

  • López-Baucells, A., Casanova, L., Puig-Montserrat, X., Espinal, A., Páramo, F., & Flaquer, C. (2017). Evaluating the use of Myotis daubentonii as an ecological indicator in Mediterranean riparian habitats. Ecological Indicators, 74, 19–27. https://doi.org/10.1016/j.ecolind.2016.11.012

    Article  Google Scholar 

  • Lowe, S., Salomon, M., Pearce, S., Collins, J., Titus, D., & Agreement, S. (2019). West Valley watershed assessment, 2018.

  • Lucieer, V., Hill, N. A., Barrett, N. S., & Nichol, S. (2013). Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuarine, Coastal and Shelf Science, 117, 94–106. https://doi.org/10.1016/j.ecss.2012.11.001

    Article  Google Scholar 

  • Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94–100. https://doi.org/10.1016/j.tree.2003.10.002

    Article  Google Scholar 

  • Ma, L. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52, 19–30.

    Article  Google Scholar 

  • Mac Nally, R., Cunningham, S. C., Baker, P. J., Horner, G. J., & Thomson, J. R. (2011). Dynamics of Murray-Darling floodplain forests under multiple stressors: The past, present, and future of an Australian icon. Water Resources Research, 47(12).

  • Mackay, J. E., Cunningham, S. C., & Cavagnaro, T. R. (2016). Riparian reforestation: Are there changes in soil carbon and soil microbial communities? Science of the Total Environment, 566–567, 960–967. https://doi.org/10.1016/j.scitotenv.2016.05.045

    Article  CAS  Google Scholar 

  • Maier, K. L., Fildani, A., Paull, C. K., McHargue, T. R., Graham, S. A., & Caress, D. W. (2013). Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution Autonomous Underwater Vehicle surveys offshore central California. Sedimentology, 60(4), 935–960. https://doi.org/10.1111/j.1365-3091.2012.01371.x

    Article  Google Scholar 

  • Malan, J.-A.C., Flint, N., Jackson, E. L., Irving, A. D., & Swain, D. L. (2018). Offstream watering points for cattle: Protecting riparian ecosystems and improving water quality? Agriculture, Ecosystems & Environment, 256, 144–152. https://doi.org/10.1016/j.agee.2018.01.013

    Article  Google Scholar 

  • Mancini, A., Frontoni, E., Zingaretti, P., & Longhi, S. (2015). High-resolution map** of river and estuary areas by using unmanned aerial and surface platforms. International Conference on Unmanned Aircraft Systems (ICUAS), 2015, 534–542. https://doi.org/10.1109/ICUAS.2015.7152333

    Article  Google Scholar 

  • Manohar, D. R., & Anbazhagan, P. (2021). Shear strength characteristics of geosynthetic reinforced rubber-sand mixtures. Geotextiles and Geomembranes, 49(4), 910–920. https://doi.org/10.1016/j.geotexmem.2020.12.015

    Article  Google Scholar 

  • Maraseni, T. N., & Mitchell, C. (2016). An assessment of carbon sequestration potential of riparian zone of Condamine Catchment, Queensland. Australia. Land Use Policy, 1(54), 139–146. https://doi.org/10.1016/j.landusepol.2016.02.013

    Article  Google Scholar 

  • Martinez, K., Hart, J. K., Basford, P. J., Bragg, G. M., Ward, T., & Young, D. S. (2017). A geophone wireless sensor network for investigating glacier stick-slip motion. Computers & Geosciences, 105, 103–112. https://doi.org/10.1016/j.cageo.2017.05.005

    Article  Google Scholar 

  • Mayer, P. M. (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness. Environmental Protection Agency https://scholar.google.com/scholar_lookup?title=Riparian+buffer+width%2C+vegetative+cover%2C+and+nitrogen+removal+effectiveness&author=Mayer%2C+Paul+M.&publication_year=2005

    Google Scholar 

  • McClinton, J. T., & White, S. M. (2015). Emplacement of submarine lava flow fields: A geomorphological model from the Niños eruption at the Galápagos Spreading Center. Geochemistry, Geophysics, Geosystems, 16(3), 899–911. https://doi.org/10.1002/2014GC005632

    Article  Google Scholar 

  • McDermott, C., Cashore, B., & Kanowski, P. (2010). Global environmental forest policies: An international comparison. Routledge.

    Book  Google Scholar 

  • McVittie, A., Norton, L., Martin-Ortega, J., Siameti, I., Glenk, K., & Aalders, I. (2015). Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips. Ecological Economics, 110, 15–27. https://doi.org/10.1016/j.ecolecon.2014.12.004

    Article  Google Scholar 

  • Meli, P., & Brancalion, P. H. S. (2017). Contrasting regulatory frameworks to govern riparian forest restoration in Mexico and Brazil: Current status and needs for advances. World Development Perspectives, 5, 60–62. https://doi.org/10.1016/j.wdp.2017.03.002

    Article  Google Scholar 

  • Mensing, D. M., Galatowitsch, S. M., & Tester, J. R. (1998). Anthropogenic effects on the biodiversity of riparian wetlands of a northern temperate landscape. Journal of Environmental Management, 53(4), 349–377. https://doi.org/10.1006/jema.1998.0215

    Article  Google Scholar 

  • Merritt, D. M., Scott, M. L., LeRoy Poff, N., Auble, G. T., & Lytle, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206–225.

    Article  Google Scholar 

  • Mertes, L. A. K. (2002). Remote sensing of riverine landscapes. Freshwater Biology, 47(4), 799–816. https://doi.org/10.1046/j.1365-2427.2002.00909.x

    Article  Google Scholar 

  • Michez, A., Piégay, H., Jonathan, L., Claessens, H., & Lejeune, P. (2016a). Map** of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. International Journal of Applied Earth Observation and Geoinformation, 44, 88–94. https://doi.org/10.1016/j.jag.2015.06.014

    Article  Google Scholar 

  • Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment, 188(3). https://www.cabdirect.org/cabdirect/abstract/20163168601

  • Miller, J., Chanasyk, D., Curtis, T., Entz, T., & Willms, W. (2010). Influence of streambank fencing with a cattle crossing on riparian health and water quality of the Lower Little Bow River in Southern Alberta. Canada. Agricultural Water Management, 97(2), 247–258. https://doi.org/10.1016/j.agwat.2009.09.016

    Article  Google Scholar 

  • Miller, J., Chanasyk, D., Curtis, T., Entz, T., & Willms, W. (2011). Environmental quality of Lower Little Bow River and riparian zone along an unfenced reach with off-stream watering. Agricultural Water Management, 98(10), 1505–1515. https://doi.org/10.1016/j.agwat.2011.05.006

    Article  Google Scholar 

  • Ming, Z., Lingling, Z., ** differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model. International Journal of Machine Learning and Cybernetics, 8(3), 765–780. https://doi.org/10.1007/s13042-015-0364-3

    Article  Google Scholar 

  • Mitra, P., Ray, R., Chatterjee, R., Basu, R., Saha, P., Raha, S., Barman, R., Patra, S., Biswas, S. S., & Saha, S. (2016). Flood forecasting using Internet of things and artificial neural networks. In 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 1–5). https://doi.org/10.1109/IEMCON.2016.7746363

    Chapter  Google Scholar 

  • Mohebbi, S., Zhang, Q., Wells, E. C., Zhao, T., Nguyen, H., Li, M., Abdel-Mottaleb, N., Uddin, S., Lu, Q., & Wakhungu, M. J. (2020). Cyber-physical-social interdependencies and organizational resilience: A review of water, transportation, and cyber infrastructure systems and processes. Sustainable Cities and Society, 62, 102327.

    Article  Google Scholar 

  • Monaghan, R. M., Carey, P. L., Wilcock, R. J., Drewry, J. J., Houlbrooke, D. J., Quinn, J. M., & Thorrold, B. S. (2009). Linkages between land management activities and stream water quality in a border dyke-irrigated pastoral catchment. Agriculture, Ecosystems & Environment, 129(1), 201–211. https://doi.org/10.1016/j.agee.2008.08.017

    Article  Google Scholar 

  • Munné, A., Prat, N., Solà, C., Bonada, N., & Rieradevall, M. (2003). A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(2), 147–163. https://doi.org/10.1002/aqc.529

    Article  Google Scholar 

  • Muste, M., Yu, K., & Spasojevic, M. (2004). Practical aspects of ADCP data use for quantification of mean river flow characteristics; part I: Moving-vessel measurements. Flow Measurement and Instrumentation, 15(1), 1–16. https://doi.org/10.1016/j.flowmeasinst.2003.09.001

    Article  Google Scholar 

  • Naiman, R. J., Decamps, H., & McClain, M. E. (2010). Riparia: Ecology, conservation, and management of streamside communities. Elsevier.

    Google Scholar 

  • Narumalani, S., Zhou, Y., & Jensen, J. R. (1997). Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic Botany, 58(3), 393–409. https://doi.org/10.1016/S0304-3770(97)00048-X

    Article  Google Scholar 

  • Nelson, R., Short, A., Valenti, M. A., Keller, C., & Smith, D. E. (2002). A multiple resource inventory of Delaware using an airborne profiling laser. https://ntrs.nasa.gov/citations/20020081026

  • Nguyen, U., Glenn, E. P., Dang, T. D., & Pham, L. T. H. (2019). Map** vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecological Informatics, 50, 43–50. https://doi.org/10.1016/j.ecoinf.2018.12.006

    Article  Google Scholar 

  • Nigam, N., Bieniawski, S., Kroo, I., & Vian, J. (2012). Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE Transactions on Control Systems Technology, 5(20), 1236–1251. https://doi.org/10.1109/TCST.2011.2167331

    Article  Google Scholar 

  • Nilsson, C., & Berggren, K. (2000). Alterations of riparian ecosystems caused by river regulation. BioScience, 50(9), 783–792. https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2

    Article  Google Scholar 

  • Nolet, B. A., & Rosell, F. (1998). Comeback of the Beaver Castor Fiber: An Overview of Old and New Conservation Problems. https://doi.org/10.1016/S0006-3207(97)00066-9

    Article  Google Scholar 

  • Novoa, J., Chokmani, K., & Lhissou, R. (2018). A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery. Science of the Total Environment, 644, 1439–1451. https://doi.org/10.1016/j.scitotenv.2018.07.069

    Article  CAS  Google Scholar 

  • Nunes, S. S., Barlow, J., Gardner, T. A., Siqueira, J. V., Sales, M. R., & Souza, C. M. (2015). A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environmental Conservation, 42(3), 193–203. https://doi.org/10.1017/S0376892914000356

    Article  Google Scholar 

  • Odonkor, P., Ball, Z., & Chowdhury, S. (2017, November 3). A distributed intelligence approach to using collaborating unmanned aerial vehicles for oil spill map**. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/DETC2017-68320

    Chapter  Google Scholar 

  • Oldenborg, K. A., & Steinman, A. D. (2019). Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Science of the Total Environment, 650, 1969–1979. https://doi.org/10.1016/j.scitotenv.2018.09.298

    Article  CAS  Google Scholar 

  • Olson, B. M., Kalischuk, A. R., Casson, J. P., & Phelan, C. A. (2011). Evaluation of cattle bedding and grazing BMPs in an agricultural watershed in Alberta. Water Science and Technology, 64(2), 326–333. https://doi.org/10.2166/wst.2011.637

    Article  CAS  Google Scholar 

  • Osborne, L. L., & Kovacic, D. A. (1993). Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology, 29(2), 243–258. https://doi.org/10.1111/j.1365-2427.1993.tb00761.x

    Article  Google Scholar 

  • Padmalal, D., Maya, K., Sreebha, S., & Sreeja, R. (2008). Environmental effects of river sand mining: A case from the river catchments of Vembanad lake. Southwest Coast of India. Environmental Geology, 54(4), 879–889. https://doi.org/10.1007/s00254-007-0870-z

    Article  CAS  Google Scholar 

  • Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., & Bond, N. (2008). Climate change and the world’s river basins: Anticipating management options. Frontiers in Ecology and the Environment, 6(2), 81–89. https://doi.org/10.1890/060148

    Article  Google Scholar 

  • Pandit, M. K., & Grumbine, R. E. (2012). Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. Scopus. https://scholarbank.nus.edu.sg/handle/10635/114740

  • Paramasivam, C. R. (2019). Merits and demerits of GIS and geostatistical techniques. GIS and Geostatistical Techniques for Groundwater Science, 17–21.

  • Parkyn, S. M. (2004). Review of riparian buffer zone effectiveness (Vol. 2005). Wellington, New Zealand: Ministry of Agriculture and Forestry.

  • Peralta-Maraver, I., Reiss, J., & Robertson, A. L. (2018). Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Science of the Total Environment, 610–611, 267–275. https://doi.org/10.1016/j.scitotenv.2017.08.036

    Article  CAS  Google Scholar 

  • Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2012). Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18(3), 821–842. https://doi.org/10.1111/j.1365-2486.2011.02588.x

    Article  Google Scholar 

  • Pettit, N. E., & Naiman, R. J. (2007). Fire in the riparian zone: Characteristics and ecological consequences. Ecosystems, 10(5), 673–687. https://doi.org/10.1007/s10021-007-9048-5

    Article  CAS  Google Scholar 

  • Phoebus, I., Segelbacher, G., & Stenhouse, G. B. (2017). Do large carnivores use riparian zones? Ecological implications for forest management. Forest Ecology and Management, 402, 157–165. https://doi.org/10.1016/j.foreco.2017.07.037

    Article  Google Scholar 

  • Pitre, R. R., Li, X. R., & Delbalzo, R. (2012). UAV route planning for joint search and track missions—an information-value approach. IEEE Transactions on Aerospace and Electronic Systems, 48(3), 2551–2565. https://doi.org/10.1109/TAES.2012.6237608

    Article  Google Scholar 

  • Poff, N. L. (2009). Managing for variability to sustain freshwater ecosystems. Journal of Water Resources Planning and Management, 135(1), 1–4. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:1(1)

    Article  Google Scholar 

  • Poulin, R., Pakalnis, R. C., & Sinding, K. (1994). Aggregate resources: Production and environmental constraints. Environmental Geology, 23(3), 221–227. https://doi.org/10.1007/BF00771792

    Article  Google Scholar 

  • Powers, C., Hanlon, R., & Schmale, D. G. (2018). Tracking of a fluorescent dye in a freshwater lake with an unmanned surface vehicle and an unmanned aircraft system. Remote Sensing, 10(1), Article 1. https://doi.org/10.3390/rs10010081

    Article  Google Scholar 

  • Pusey, B. J., & Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: A review. Marine and Freshwater Research, 54(1), 1–16. https://doi.org/10.1071/mf02041

    Article  Google Scholar 

  • Rabeni, C. F., & Smale, M. A. (1995). Effects of siltation on stream fishes and the potential mitigating role of the buffering riparian zone. Hydrobiologia, 303(1), 211–219. https://doi.org/10.1007/BF00034058

    Article  Google Scholar 

  • Ragavan, S. (2011). New Paradigms for Protection of Biodiversity (SSRN Scholarly Paper ID 1742721). Social Science Research Network. https://papers.ssrn.com/abstract=1742721

  • Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  • Ramilan, T., Scrimgeour, F., & Marsh, D. (2010). Modelling riparian buffers for water quality enhancement in the Karapiro catchment. In 2010 Conference (54th), February 10−12, 2010, Adelaide, Australia No. 59166. Australian Agricultural and Resource Economics Society. https://econpapers.repec.org/paper/agsaare10/59166.htm

  • Raven, P., Holmes, N. T. H., Dawson, F. H., & Everard, M. (1998). Quality assessment using river habitat survey data. Aquatic Conservation: Marine and Freshwater Ecosystems, 8(4), 477–499. https://doi.org/10.1002/(SICI)1099-0755(199807/08)8:4<477::AID-AQC299>3.0.CO;2-K

    Article  Google Scholar 

  • Rawluk, A. (2013). The investigation and evaluation of riparian management practices within the Manitoba landscape: Off-stream watering systems. https://mspace.lib.umanitoba.ca/xmlui/handle/1993/19452

  • Renaud, F. G., Syvitski, J. P., Sebesvari, Z., Werners, S. E., Kremer, H., Kuenzer, C., Ramesh, R., Jeuken, A. D., & Friedrich, J. (2013). Tip** from the Holocene to the Anthropocene: How threatened are major world deltas? Current Opinion in Environmental Sustainability, 5(6), 644–654.

    Article  Google Scholar 

  • Resop, J. P., Lehmann, L., & Hession, W. C. (2019). Drone laser scanning for modeling riverscape topography and vegetation: Comparison with traditional aerial lidar. Drones, 3(2), 35.

    Article  Google Scholar 

  • Rheinhardt, R. D., Brinson, M. M., Meyer, G. F., & Miller, K. H. (2012). Carbon storage of headwater riparian zones in an agricultural landscape. Carbon Balance and Management, 7(1), 4. https://doi.org/10.1186/1750-0680-7-4

    Article  CAS  Google Scholar 

  • Richardson, D. M., Holmes, P. M., Esler, K. J., Galatowitsch, S. M., Stromberg, J. C., Kirkman, S. P., Pyšek, P., & Hobbs, R. J. (2007). Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 13(1), 126–139. https://doi.org/10.1111/j.1366-9516.2006.00314.x

    Article  Google Scholar 

  • Richit, L. A., Bonatto, C., Carlotto, T., da Silva, R. V., & Grzybowski, J. M. V. (2017). Modelling forest regeneration for performance-oriented riparian buffer strips. Ecological Engineering, 106, 308–322. https://doi.org/10.1016/j.ecoleng.2017.05.044

    Article  Google Scholar 

  • Riedler, B., Pernkopf, L., Strasser, T., Lang, S., & Smith, G. (2015). A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data. International Journal of Applied Earth Observation and Geoinformation, 37, 114–123. https://doi.org/10.1016/j.jag.2014.09.006

    Article  Google Scholar 

  • Roche, L. M., Cutts, B. B., Derner, J. D., Lubell, M. N., & Tate, K. W. (2015). On-ranch grazing strategies: Context for the rotational grazing dilemma. Rangeland Ecology & Management, 68(3), 248–256. https://doi.org/10.1016/j.rama.2015.03.011

    Article  Google Scholar 

  • Rodríguez-González, P. M., Abraham, E., Aguiar, F., Andreoli, A., Baležentienė, L., Berisha, N., Bernez, I., Bruen, M., Bruno, D., Camporeale, C., Čarni, A., Chilikova-Lubomirova, M., Corenblit, D., Ćušterevska, R., Doody, T., England, J., Evette, A., Francis, R., Garófano-Gómez, V., & Dufour, S. (2022). Bringing the margin to the focus: 10 challenges for riparian vegetation science and management. WIREs Water, 9(5), e1604. https://doi.org/10.1002/wat2.1604

    Article  Google Scholar 

  • Rommel, E., Giese, L., Fricke, K., Kathöfer, F., Heuner, M., Mölter, T., Deffert, P., Asgari, M., Näthe, P., & Dzunic, F. (2022). Very high-resolution imagery and machine learning for detailed map** of riparian vegetation and substrate types. Remote Sensing, 14(4), 954.

    Article  Google Scholar 

  • Rosenstock, T. S., Tully, K. L., Arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K., & Verchot, L. V. (2014). Agroforestry with N2-fixing trees: Sustainable development’s friend or foe? Current Opinion in Environmental Sustainability, 6, 15–21.

    Article  Google Scholar 

  • Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q. G., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C. Z., Rawlins, S., Imeson, A., Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., & Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453(7193), 353.

    Article  CAS  Google Scholar 

  • Rosot, M. A. D., Maran, J. C., da Luz, N. B., Garrastazú, M. C., de Oliveira, Y. M. M., Franciscon, L., Clerici, N., Vogt, P., & de Freitas, J. V. (2018). Riparian forest corridors: A prioritization analysis to the Landscape Sample Units of the Brazilian National Forest Inventory. Ecological Indicators, 93, 501–511. https://doi.org/10.1016/j.ecolind.2018.03.071

    Article  Google Scholar 

  • Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K., Dwevidi, R. S., Joshi, C., Behera, M. D., Meiyappan, P., Sharma, Y., Jain, A. K., Singh, J. S., Palchowdhuri, Y., Ramachandran, R. M., Pinjarla, B., Chakravarthi, V., Babu, N., Gowsalya, M. S., & Kushwaha, D. (2015). Development of Decadal (1985–1995–2005) Land use and land cover database for India. Remote Sensing, 7(3), Article 3. https://doi.org/10.3390/rs70302401

    Article  Google Scholar 

  • Rutherford, J. C., Davies-Colley, R. J., Quinn, J. M., Stroud, M. J., & Cooper, A. B. (1999). Stream shade : Towards a restoration strategy. NIWA, Dept. of Conservation.

    Google Scholar 

  • Ryan, E. (2020). A short history of the public trust doctrine and its intersection with private water law. Va. Envtl. LJ, 38, 135.

    Google Scholar 

  • Saint-Jacques, N., & Richard, Y. (1998). Développement d’un indice de qualité de la bande riveraine: Application à la rivière Chaudière et mise en relation avec l’intégrité biotique du milieu aquatique. Le Bassin de La Rivière Chaudière: L’état de L’écosystème Aquatique—1996.

  • Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., & Coley, P. D. (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322, 254–258. https://doi.org/10.1038/322254a0

    Article  Google Scholar 

  • Samaritani, E., Shrestha, J., Fournier, B., Frossard, E., Gillet, F., Guenat, C., Niklaus, P. A., Pasquale, N., Tockner, K., Mitchell, E. A. D., & Luster, J. (2011). Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland). Hydrology and Earth System Sciences, 15(6), 1757–1769. https://doi.org/10.5194/hess-15-1757-2011

    Article  CAS  Google Scholar 

  • San Juan, V., Santos, M., & Andújar, J. M. (2018). Intelligent UAV map generation and discrete path planning for search and rescue operations. Complexity, 2018, e6879419. https://doi.org/10.1155/2018/6879419

    Article  Google Scholar 

  • Sanford, W. E., & Pope, J. P. (2013). Quantifying groundwater’s role in delaying improvements to chesapeake bay water quality. Environmental Science & Technology, 47(23), 13330–13338. https://doi.org/10.1021/es401334k

    Article  CAS  Google Scholar 

  • Saritha, V. K., Gopikrishna, V. G., Rameshan, M., & Mohan, M. (2019). Impact of climate change-induced flood on fragile riparian vegetation of braid bars: -a case study from Chalakkudy River, Southwest Coast of India. Climate Change and Environmental Sustainability, 7(2), 143. https://doi.org/10.5958/2320-642X.2019.00019.X

    Article  Google Scholar 

  • Sarkar, U. K., Gupta, B. K., & Lakra, W. S. (2010). Biodiversity, ecohydrology, threat status and conservation priority of the freshwater fishes of river Gomti, a tributary of river Ganga (India). The Environmentalist, 30(1), 3–17. https://doi.org/10.1007/s10669-009-9237-1

    Article  Google Scholar 

  • Schultz, R. C., Colletti, J. P., Isenhart, T. M., Simpkins, W. W., Mize, C. W., & Thompson, M. L. (1995). Design and placement of a multi-species Riparian buffer strip system. Agroforestry Systems (Netherlands). https://scholar.google.com/scholar_lookup?title=Design+and+placement+of+a+multispecies+riparian+buffer+strip+system&author=Schultz%2C+R.C.+%28Iowa+State+Univ.%2C+Ames%2C+IA+%28USA%29.+Dept.+of+Forestry%29&publication_year=1995

  • Scott, A., Carter, C., Hardman, M., Grayson, N., & Slaney, T. (2018). Mainstreaming ecosystem science in spatial planning practice: Exploiting a hybrid opportunity space. Land Use Policy, 70, 232–246. https://doi.org/10.1016/j.landusepol.2017.10.002

    Article  Google Scholar 

  • Scott, M., & Reynolds, E. (2007). Field-based evaluation of sampling techniques to support long-term monitoring of Riparian ecosystems along wadeable streams on the Colorado Plateau. Geological survey open-file report 2007−1266, 2007(1266), 1–57.

    Google Scholar 

  • Seavy, N. E., Gardali, T., Golet, G. H., Griggs, F. T., Howell, C. A., Kelsey, R., Small, S. L., Viers, J. H., & Weigand, J. F. (2009). Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecological Restoration, 27(3), 330–338. https://doi.org/10.3368/er.27.3.330

    Article  Google Scholar 

  • Seena, S., Carvalho, F., Cássio, F., & Pascoal, C. (2017). Does the developmental stage and composition of riparian forest stand affect ecosystem functioning in streams? Science of the Total Environment, 609, 1500–1511. https://doi.org/10.1016/j.scitotenv.2017.07.252

    Article  CAS  Google Scholar 

  • Shanta, H. A. (2018). Tsangpo-Brahmaputra: A perception study from riparian perspectives. Journal of Sustainable Development, 11(3), 33. https://doi.org/10.5539/jsd.v11n3p33

    Article  Google Scholar 

  • Shields, F. D. J., Knight, S. S., Testa, S. I., & Cooper, C. M. (2003). Use of acoustic Doppler current profilers to describe velocity distributions at the reach scale. https://pubag.nal.usda.gov/catalog/2584

  • Singh, A., Batalin, M. A., Chen, V., Stealey, M., Jordan, B., Fisher, J. C., Harmon, T. C., Hansen, M. H., & Kaiser, W. J. (2007). Autonomous robotic sensing experiments at San Joaquin River. Proceedings 2007 IEEE International Conference on Robotics and Automation, 4987–4993. https://doi.org/10.1109/ROBOT.2007.364248

  • Sirombra, M. G., & Mesa, L. M. (2012). A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBRy index. Ecological Indicators, 20, 324–331. https://doi.org/10.1016/j.ecolind.2012.02.021

    Article  Google Scholar 

  • Sliva, L., & Dudley Williams, D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35(14), 3462–3472. https://doi.org/10.1016/S0043-1354(01)00062-8

    Article  CAS  Google Scholar 

  • Smart, R. P., Soulsby, C., Cresser, M. S., Wade, A. J., Townend, J., Billett, M. F., & Langan, S. (2001). Riparian zone influence on stream water chemistry at different spatial scales: A GIS-based modelling approach, an example for the Dee, NE Scotland. The Science of the Total Environment, 280(1–3) https://www.elibrary.ru/item.asp?id=826157

  • Sosa, B., Romero, D., Fernández, G., & Achkar, M. (2018c). Spatial analysis to identify invasion colonization strategies and management priorities in riparian ecosystems. Forest Ecology and Management, 411, 195–202. https://doi.org/10.1016/j.foreco.2018.01.039

    Article  Google Scholar 

  • Sovell, L. A., Vondracek, B., Frost, J. A., & Mumford, K. G. (2000). Impacts of rotational grazing and riparian buffers on physicochemical and biological characteristics of Southeastern Minnesota, USA. Streams. Environmental Management, 26(6), 629–641. https://doi.org/10.1007/s002670010121

    Article  CAS  Google Scholar 

  • Stromberg, J. C., Beauchamp, V. B., Dixon, M. D., Lite, S. J., & Paradzick, C. (2007). Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshwater Biology, 52(4), 651–679. https://doi.org/10.1111/j.1365-2427.2006.01713.x

    Article  Google Scholar 

  • Stutter, M. I., Chardon, W. J., & Kronvang, B. (2012). Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction. Journal of Environmental Quality, 41(2), 297–303. https://doi.org/10.2134/jeq2011.0439

    Article  CAS  Google Scholar 

  • Suhari, K. T., & Gunawan, P. H. (2017). The Anyar river depth map** from surveying boat (SHUMOO) using ArcGIS and surfer. In 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC) (pp. 227–230). https://doi.org/10.1109/ICCEREC.2017.8226703

    Chapter  Google Scholar 

  • Sunil, C., Somashekar, R. K., & Nagaraja, B. C. (2010). Riparian vegetation assessment of Cauvery River Basin of South India. Environmental Monitoring and Assessment, 170(1–4), 545–553. https://doi.org/10.1007/s10661-009-1256-3

    Article  CAS  Google Scholar 

  • Sunil, C., Somashekar, R. K., & Bc, N. (2011). Impact of anthropogenic disturbances on riparian forest ecology and ecosystem services in Southern India. International Journal of Biodiversity Science, Ecosystem Services&Management, 273–282. https://doi.org/10.1080/21513732.2011.631939

  • Swaminathan, S. (n.d). Bombay Natural History Society U.S. Fish and Wildlife Service (p. 102)

  • Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., & Décamps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16–17), 2959–2976. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B

    Article  Google Scholar 

  • Tester, P., Kibler, S., Hobson, B., & Litaker, R. (2006). A test of an autonomous underwater vehicle as a monitoring tool in shallow water. African Journal of Marine Science, 28(2), 251–255.

    Article  Google Scholar 

  • Tibby, J., Adamson, K., & Kershaw, A. P. (2020). An 1800-year water-quality and vegetation record from Junction Park Billabong, Murray River, Australia: An assessment of European impacts and sensitivity to climate. Journal of Paleolimnology, 63(2), 159–175.

    Article  Google Scholar 

  • Trimble, S. W., & Mendel, A. C. (1995). The cow as a geomorphic agent—a critical review. Geomorphology, 13(1), 233–253. https://doi.org/10.1016/0169-555X(95)00028-4

    Article  Google Scholar 

  • Tripathi, N., Singh, R. S., & Hills, C. D. (2016). Reclamation of mine-impacted land for ecosystem recovery. John Wiley & Sons.

    Book  Google Scholar 

  • Truax, B., Gagnon, D., Lambert, F., & Fortier, J. (2017). Riparian buffer growth and soil nitrate supply are affected by tree species selection and black plastic mulching. Ecological Engineering, 106, 82–93. https://doi.org/10.1016/j.ecoleng.2017.05.037

    Article  Google Scholar 

  • Tubau, X., Paull, C. K., Lastras, G., Caress, D. W., Canals, M., Lundsten, E., Anderson, K., Gwiazda, R., & Amblas, D. (2015). Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes. Marine Geology, 365, 61–79. https://doi.org/10.1016/j.margeo.2015.04.004

    Article  Google Scholar 

  • United Nations Educational. (1974). Task force on: Criteria and guidelines for the choice and establishment of biosphere reserves: Programme on Man and the Biosphere (MAB) ; Paris, 20 − 24 May 1974 ; Final report. Uneso.

    Google Scholar 

  • Valero, E., Picos, J., & Álvarez, X. (2014). Characterization of riparian forest quality of the Umia River for a proposed restoration. Ecological Engineering, 67, 216–222. https://doi.org/10.1016/j.ecoleng.2014.03.084

    Article  Google Scholar 

  • Valkama, E., Usva, K., Saarinen, M., & Uusi-Kämppä, J. (2019). A meta-analysis on nitrogen retention by buffer zones. Journal of Environmental Quality, 48(2), 270–279. https://doi.org/10.2134/jeq2018.03.0120

    Article  CAS  Google Scholar 

  • Verry, E. S., Hornbeck, J. W., & Dolloff, C. A. (1999). Riparian management in forests of the continental Eastern United States. CRC Press.

    Google Scholar 

  • Vidon, P., Campbell, M. A., & Gray, M. (2008). Unrestricted cattle access to streams and water quality in till landscape of the Midwest. Agricultural Water Management, 95(3), 322–330. https://doi.org/10.1016/j.agwat.2007.10.017

    Article  Google Scholar 

  • Vosse, S., Esler, K. J., Richardson, D. M., & Holmes, P. M 2008 Can riparian seed banks initiate restoration after alien plant invasion?Evidence from the Western Cape, South Africa. https://doi.org/10.1016/j.sajb.2008.01.170

  • Vowell, J. L. (2001). Using stream bioassessment to monitor best management practice effectiveness. Forest Ecology and Management, 143(1), 237–244. https://doi.org/10.1016/S0378-1127(00)00521-1

    Article  Google Scholar 

  • Vyas, V., Kumar, A., Wani, S. G., & Parashar, V. (2012). Status of riparian buffer zone and floodplain areas of River Narmada India. International Journal of Environmental Sciences, 3(1), 659–674.

    Google Scholar 

  • Wallick, J. R., Grant, G., Lancaster, S., Bolte, J. P., & Denlinger, R. (2022). Patterns and controls on historical channel change in the Willamette River, Oregon USA. In Large rivers (pp. 737–775). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119412632.ch25

    Chapter  Google Scholar 

  • Wang, X. (2022). Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land, 11(4), 484.

    Article  Google Scholar 

  • Wanjala, S., Mwinami, T., Harper, D. M., Morrison, E. H. J., & Pacini, N. (2018). Ecohydrological tools for the preservation and enhancement of ecosystem services in the Naivasha Basin. Kenya. Ecohydrology & Hydrobiology, 18(2), 155–173. https://doi.org/10.1016/j.ecohyd.2017.09.004

    Article  Google Scholar 

  • Wasson, J.-G., Villeneuve, B., Iital, A., Murray-Bligh, J., Dobiasova, M., Bacikova, S., Timm, H., Pella, H., Mengin, N., & Chandesris, A. (2010). Large-scale relationships between basin and riparian land cover and the ecological status of European rivers. Freshwater Biology, 55(7), 1465–1482. https://doi.org/10.1111/j.1365-2427.2010.02443.x

    Article  Google Scholar 

  • Williams, D., & Paudel, K. P. (2020). Migration, remittance, and adoption of conservation practices. Environmental Management, 66(6), 1072–1084.

    Article  Google Scholar 

  • Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., & Helmer, E. (2008). Free access to Landsat imagery. Science, 320(5879), 1011–1011.

    Article  CAS  Google Scholar 

  • Wu, M., Che, Y., Lv, Y., & Yang, K. (2017). Neighbourhood-scale urban riparian ecosystem classification. Ecological Indicators, 72, 330–339. https://doi.org/10.1016/j.ecolind.2016.08.025

    Article  Google Scholar 

  • Wunder, S. (2007). The efficiency of payments for environmental services in tropical conservation. Conservation Biology, 21(1), 48–58. https://doi.org/10.1111/j.1523-1739.2006.00559.x

    Article  Google Scholar 

  • **ang, W.-N. (1996). GIS-based riparian buffer analysis: Injecting geographic information into landscape planning. Landscape and Urban Planning, 34(1), 1–10. https://doi.org/10.1016/0169-2046(95)00206-5

    Article  Google Scholar 

  • Yang, X. (2007). Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and map**. International Journal of Remote Sensing, 28, 353–370. https://doi.org/10.1080/01431160600726763

    Article  CAS  Google Scholar 

  • Yeung, A. C. Y., Lecerf, A., & Richardson, J. S. (2017). Assessing the long-term ecological effects of riparian management practices on headwater streams in a coastal temperate rainforest. Forest Ecology and Management, 384, 100–109. https://doi.org/10.1016/j.foreco.2016.10.044

    Article  Google Scholar 

  • Yu, M., Bambacus, M., Cervone, G., Clarke, K., Duffy, D., Huang, Q., Li, J., Li, W., Li, Z., & Liu, Q. (2020). Spatiotemporal event detection: A review. International Journal of Digital Earth, 13(12), 1339–1365.

    Article  Google Scholar 

  • Zaimes, G. N., & Schultz, R. C. (2012). Assessing riparian conservation land management practice impacts on gully erosion in Iowa. Environmental Management, 49(5), 1009–1021. https://doi.org/10.1007/s00267-012-9830-9

    Article  Google Scholar 

  • Zhang, L., & Nandi, A. K. (2007). Fault classification using genetic programming. Mechanical Systems and Signal Processing, 21(3), 1273–1284. https://doi.org/10.1016/j.ymssp.2006.04.004

    Article  Google Scholar 

  • Zhang, M., O’Connor, P. J., Zhang, J., & Ye, X. (2021). Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma, 384, 114801. https://doi.org/10.1016/j.geoderma.2020.114801

    Article  CAS  Google Scholar 

  • Zimbres, B., Machado, R. B., & Peres, C. A. (2018). Anthropogenic drivers of headwater and riparian forest loss and degradation in a highly fragmented southern Amazonian landscape. Land Use Policy, 72, 354–363. https://doi.org/10.1016/j.landusepol.2017.12.062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Majumdar.

Ethics declarations

Conflict of Interest

This research was partially supported by the Institute Research Fellowship (Adm/Results/Ph.D. (MO 2021)/2020–21/4) awarded to Aditi Majumdar. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, A., Avishek, K. Riparian Zone Assessment and Management: an Integrated Review Using Geospatial Technology. Water Air Soil Pollut 234, 319 (2023). https://doi.org/10.1007/s11270-023-06329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06329-1

Keywords

Navigation