Log in

Revisiting Wagner’s Criteria to Predict Establishment and Retention of Alumina Scales on Ternary NiCrAl Alloys

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Despite the advent of numerical modeling approaches and high-performance computing infrastructure, the design and development of corrosion-resistant high temperature alloys (> 500 °C) continue to be largely empirical and typically involve extensive experimentation. This is mainly due to the lack of a single unified physics-based model that can address the impact of multiple competing factors such as time, environment, alloy composition, microstructure, and geometry. The classical Wagner’s criteria have been foundational to estimate the minimum concentrations required of an oxide-forming element to establish and sustain a protective oxide scale. However, the formulation is primarily limited to lower-order alloy systems (binary alloys) and ignores the time dependence of subsurface compositional changes in the alloy. The lack of key data on the temperature and composition dependence of the solubility and transport of oxidants in multicomponent-multiphase alloys further exacerbates the problem. In the present work, a few of these limitations were addressed using a flux-based approach (FLAP) which tracks the spatiotemporal evolution of the fundamental flux balance between oxygen and the oxide-forming elements to enable the prediction of the formation of an external alumina scale in ternary NiCrAl alloys. The modeling results were validated with the literature findings and additional experimental work conducted in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. B. A. Pint, JOM 65, 1024 (2013).

    Article  Google Scholar 

  2. D. Pierce, et al., Progress in Materials Science 103, 109 (2019).

    Article  CAS  Google Scholar 

  3. P. J. Ennis, W. J. Quadakkers, and H. Schuster, Materials Science and Technology 8, 78 (1992).

    Article  CAS  Google Scholar 

  4. R. Pillai, M. Romedenne and S. Lee, Development of an Open-source Alloy selection and Lifetime Assessment Tool for Structural Components in CSP, (United States, Medium: ED, 2022).

  5. R. Pillai, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 96, 385 (2021).

    Article  CAS  Google Scholar 

  6. I. G. Wright, et al., Lifetime Modelling of High Temperature Corrosion Processes 34, 339 (2001).

    CAS  Google Scholar 

  7. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  CAS  Google Scholar 

  8. W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 126 (1994).

    Article  CAS  Google Scholar 

  9. E. K. Ohriner and J. E. Morral, Scripta Metallurgica 13, 7 (1979).

    Article  CAS  Google Scholar 

  10. A. Chyrkin, et al., Corrosion Science 96, 32 (2015).

    Article  CAS  Google Scholar 

  11. R. Pillai, et al., Corrosion Science 127, 27 (2017).

    Article  CAS  Google Scholar 

  12. H. E. McCoy, Oak Ridge Nat. Lab. Rev. 3, 35 (1969).

    CAS  Google Scholar 

  13. J. R. DiStefano et al., Summary of Modified 9Cr-1Mo Steel Development Program, 1975–1985, (United States. p. Medium: ED; Size: 301 p, 1986).

  14. Y. Yamamoto, et al., Science (New York N.Y.) 316, 433 (2007).

    Article  CAS  Google Scholar 

  15. M. P. Brady, et al., JOM 60, 12 (2008).

    Article  CAS  Google Scholar 

  16. C. Wagner, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 63, 772 (1959).

    Article  CAS  Google Scholar 

  17. J. D. Poplawsky, et al., Scripta Materialia 210, 114411 (2022).

    Article  CAS  Google Scholar 

  18. M. Schiek, et al., Oxidation of Metals 84, 661 (2015).

    Article  CAS  Google Scholar 

  19. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  20. D. P. Whittle, et al., Philosophical Magazine A 46, 931 (1982).

    Article  CAS  Google Scholar 

  21. R. Pillai, et al., Materials at High Temperatures 32, 57 (2015).

    Article  CAS  Google Scholar 

  22. R. Pillai, et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 53, 62 (2016).

    Article  CAS  Google Scholar 

  23. H. Larsson, H. Strandlund, and M. Hillert, Acta Materialia 54, 945 (2006).

    Article  CAS  Google Scholar 

  24. H. Larsson and A. Engstrom, Acta Materialia 54, 2431 (2006).

    Article  CAS  Google Scholar 

  25. Thermo-Calc, Thermo-Calc Software TCNi8/Ni-Based Superalloys Satabase Version 8, (Sweden, 2018).

  26. MobNi5, Thermo-Calc Software MobNi5/Ni-Alloys Mobility Database Version 5, (Sweden, 2019).

  27. J. W. Park and C. J. Altstetter, Metallurgical Transactions A 18, 43 (1987).

    Article  Google Scholar 

  28. A. Chyrkin et al., 96, 32 (2015).

  29. R. Pillai, et al., Materials at High Temperatures 35, 78 (2017).

    Article  Google Scholar 

  30. R. Pillai et al., 127, 27 (2017).

  31. R. Pillai et al., Computational Methods to Accelerate Development of Corrosion Resistant Coatings for Industrial Gas Turbines. (Superalloys, 2020).

  32. R. Pillai, S.S. Raiman and B.A. Pint, Journal of Nuclear Materials, 546, 152755 (2021).

  33. R. Pillai, et al., JOM 75, 994 (2023).

    Article  CAS  Google Scholar 

  34. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  35. C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of Aime 245, 2495 (1969).

    CAS  Google Scholar 

  36. F. H. Stott, et al., Solid State Ionics 12, 365 (1984).

    Article  CAS  Google Scholar 

  37. P. Tomaszewicz and G. R. Wallwork, Oxidation of Metals 20, 75 (1983).

    Article  CAS  Google Scholar 

  38. A. Chyrkin, et al., Corrosion Science 124, 138 (2017).

    Article  CAS  Google Scholar 

  39. A. Chyrkin, et al., Materials at High Temperatures 32, 102 (2015).

    Article  CAS  Google Scholar 

  40. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).

    Article  CAS  Google Scholar 

  41. F. S. Pettit, Transactions of the Metallurgical Society of Aime 239, 1296 (1967).

    CAS  Google Scholar 

  42. R. Klumpes, et al., Werkstoffe Und Korrosion-Materials and Corrosion 47, 619 (1996).

    Article  CAS  Google Scholar 

  43. Thermo-Calc, Thermo-Calc Software TCNi11/Ni-Alloys Database Version 11.0, (2021).

Download references

Acknowledgements

J. Wade and G. Garner assisted with the experimental work at ORNL. V. Cox, T. Lowe and M. Romedenne are thanked for hel** with metallography and microstructural characterization, respectively. Mackenzie Ridley is thanked for his valuable comments on the paper. The authors are grateful to Michael P. Brady for the technical discussions on the paper. The authors appreciate the continued support of J. A. Haynes as program manager. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Funding

The authors would like to thank the U.S. Department of Energy, Office of Vehicle Technologies, Powertrain Materials Core Program for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

RP was involved in conceptualization, experimental work, data analyses, interpretation, modeling, and original draft writing. CJS contributed to modeling, manuscript review and editing.

Corresponding author

Correspondence to R. Pillai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Stephens, C.J. Revisiting Wagner’s Criteria to Predict Establishment and Retention of Alumina Scales on Ternary NiCrAl Alloys. High Temperature Corrosion of mater. 100, 683–708 (2023). https://doi.org/10.1007/s11085-023-10202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10202-1

keywords

Navigation