Log in

The development of alumina-forming austenitic stainless steels for high-temperature structural use

  • High-Temperature Alloys
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A new family of alumina-forming austenitic stainless steels is under development at Oak Ridge National Laboratory for structural use in aggressive oxidizing environments at 600–900°C. Data obtained to date indicate the potential to achieve superior oxidation resistance compared to conventional Cr2O3-forming iron-and nickel-based heat-resistant alloys, with creep strength comparable to state-of-the-art advanced austenitic stainless steels. A preliminary assessment also indicated that the newly developed alloys are amenable to welding. Details of the alloy design approach and composition-microstructure-property relationships are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Brady et al., “Alumina-Forming Austenitics: A New Class of Heat-Resistant Stainless Steels,” Stainless Steel World Magazine (March 2008), pp. 23–29.

  2. Y. Yamamoto et al., Science, 316(5823) (2007), pp. 433–436.

    Article  CAS  Google Scholar 

  3. Y. Yamamoto et al., Met. Mater. Trans. A, 38A(11) (2007), pp. 2737–2746.

    Article  CAS  Google Scholar 

  4. M.P. Brady et al., Scripta Mater., 57(12) (2007), pp. 1117–1120.

    Article  CAS  Google Scholar 

  5. Y. Yamamoto et al., Intermetallics, 16(3) (2008), pp. 453–462.

    Article  CAS  Google Scholar 

  6. M.P. Brady et al., Materials Science Forum 2008 (in press).

  7. Y. Yamamoto et al., to be submitted to Acta Materialia.

  8. G.Y. Lai, High Temperature Corrosion of Engineering Alloys (Materials Park, OH: ASM International, 1990).

    Google Scholar 

  9. B. Gleeson, Corrosion and Environmental Degradation, Volume II, ed. M. Schutze, Materials Science and Technology Series (Weinheim, Germany: Wiley-VCH, 2000), chapter 5, pp. 173–228.

    Google Scholar 

  10. P. Kofstad, editor, High Temperature Corrosion (London: Elsevier, 1988).

    Google Scholar 

  11. M.P. Brady et al., Corrosion and Environmental Degradation, Volume II, ed. M. Schutze, Materials Science and Technology Series (Weinheim, Germany; Wiley-VCH, 2000), chapter 6, pp. 229–325.

    Google Scholar 

  12. J. Doychak, Intermetallic Compounds: Principles and Practice Vol. 1, ed. J.H. Westbrook and R.L. Fleischer (New York: John Wiley & Sons, 1994), pp. 977–1016.

    Google Scholar 

  13. G.H. Meier, Materials and Corrosion, 47(11) (1996), pp. 595–618.

    Article  CAS  Google Scholar 

  14. G. Welsch et al., Oxidation and Corrosion of Intermetallic Alloys, ed. G. Welsch and P.D. Desai (West Lafayette, IN: Purdue Research Foundation, 1996), pp. 121–266.

    Google Scholar 

  15. G.J. Yurek, Corrosion Mechanisms, ed. F. Mansfeld (New York: Marcel Dekker, Inc., 1987), pp. 398–446.

    Google Scholar 

  16. E.J. Opila, Mat. Sci. Forum, 461–464 (2004), pp. 765–773.

    Google Scholar 

  17. B.A. Pint, R. Peraldi, and P.J. Maziasz, Mat. Sci. Forum, 461–464 (2004), p. 815.

    Article  Google Scholar 

  18. P.J. Maziasz et al., International Journal of Hydrogen Energy, 32(16) (2007), pp. 3622–3630.

    Article  CAS  Google Scholar 

  19. F.G. Wilson, B.R. Knott, and C.D. Desforges, Met. Mater. Trans. A, 9(2) (1978), pp. 275–282.

    Article  Google Scholar 

  20. T. Fujioka et al., U.S. patent 3,989,514 (1976).

  21. J.A. McGurty, “Austenitic Iron Alloys,” U.S. patent 4,086,085 (25 April 1978).

  22. J.C. Pivin et al., Corr. Sci., 20 (1980), pp. 351–373.

    Article  CAS  Google Scholar 

  23. V. Ramakrishnan, J. A. McGurty, and N. Jayaraman, Oxid. Met., 60 (1988), pp. 185–200.

    Article  Google Scholar 

  24. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met., 44(1–2) (1995), pp. 113–145.

    Article  CAS  Google Scholar 

  25. C. Wagner, Corros. Sci., 5 (1965), pp. 751–764.

    Article  CAS  Google Scholar 

  26. P.J. Maziasz, JOM, 41(7) (1989), pp. 14–20.

    CAS  Google Scholar 

  27. R.W. Swindeman et al., “Evolution of Advanced Austenitic Alloys Relative to Alloy Design Criteria for Steam Service: Part 1—Lean Stainless Steels,” Oak Ridge Natl. Lab. Rep. ORNL-6629/P1 (Oak Ridge, TN, 1990).

  28. J.P. Shingledecker et al., Proc. ECCC Conference on Creep and Fracture in High Temperature Components—Design and Life Assessment Issues (Lancaster, PA: DEStech, 2005), pp. 99–109.

    Google Scholar 

  29. Allegheny Ludlum, TECHNICAL DATA BLUE SHEET, Stainless Steels, types 321, 347 and 348 (Pittsburgh, PA: ATI Allegheny Ludlum Corp., 2003), www.alleghenyludlum.com.

    Google Scholar 

  30. E. Essuman et al., Oxid. Met., 69(3–4) (2008), pp. 143–162.

    Article  CAS  Google Scholar 

  31. I. Kvernes, M. Oliveira, and P. Kofstad, Corr. Sci., 17 (1997), pp. 237–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Brady.

Additional information

Author’s Note: Part of this research summary is based on a recent review paper (see Reference 1) and findings first reported in References 2–7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, M.P., Yamamoto, Y., Santella, M.L. et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60, 12–18 (2008). https://doi.org/10.1007/s11837-008-0083-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0083-2

Keywords

Navigation