Log in

Establishing a Design Strategy for Corrosion Resistant Structural Materials in Molten Salt Technologies

  • Materials Interactions with Molten Salt for Nuclear Reactors
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To address the gap in material design strategies for structural components in molten salt-powered technologies, the current work aimed to identify key parameters governing corrosion induced degradation of materials during exposures in molten halide salts. The applicability of the data on dissolution rates of pure metals (e.g., Cr) in a given molten salt to enable predictions of corrosion behavior of multicomponent binary and ternary Fe-based model and Ni-based commercial alloys isothermally exposed in the purified KCl-Mg\({{\hbox {Cl}}_2}\) in quartz capsules at 700 and 800°C was evaluated. The influence of alloy chemistry on initial dissolution rates and the consequent impact on the time-dependent corrosion induced microstructural evolution in the alloy subsurface was predicted with a coupled thermodynamic-kinetic model. The model was well able to predict the Cr depletion in all investigated alloys demonstrating the ability of the proposed approach to enable a unique design strategy for structural materials in molten salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Le Brun, J. Nucl. Mater. 360(1), 1 (2007). https://doi.org/10.1016/j.jnucmat.2006.08.017

    Article  Google Scholar 

  2. G. Locatelli, M. Mancini, N. Todeschini, Energy Policy 61, 1503 (2013). https://doi.org/10.1016/j.enpol.2013.06.101

    Article  Google Scholar 

  3. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, Z.M. Dai, Progr. Nucl. Energy 77, 308 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  4. A. Tonti, C. Renault, M. Sperandio, C. DelleSite, G. Baylac, F. Carre, Proc. Asme Pressure Vessels Pi** Conf. 1, 657 (2009)

    Google Scholar 

  5. M. Mehos, C. Turchi, J. Vidal, M. Wagner, Z. Ma, C. Ho, W. Kolb, C. Andraka, A. Kruizenga, Concentrating Solar Power Gen3 Demonstration Roadmap, Report NREL/TP-5500-67464, NREL, (2017)

  6. C.W. Forsberg, Int. J. Hyd. Energy 28(10), 1073 (2003)

    MathSciNet  Google Scholar 

  7. P.N. Haubenreich, Nucl. Eng. Int. 14(155), 325 (1969)

    Google Scholar 

  8. M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Nucl. Appl. Technol. 8(2), 107 (1970). https://doi.org/10.13182/Nt70-A28619

    Article  Google Scholar 

  9. W. Manly, G. J. Adamson, J. Coobs, J. DeVan, D. Douglas, E. Hoffman, P. Patriarca, Aircraft Reactor Experiment–Metallurgical Aspects, Report ORNL-2349 United States 10.2172/4227617 NTIS ORNL English, ; Oak Ridge National Lab., Tenn., https://www.osti.gov/servlets/purl/4227617, other Information: Decl. Oct. 9, 1959. Orig. Receipt Date: 31-DEC-60, (1958)

  10. J.C. Gomez-Vidal, R. Tirawat, Solar Energy Mater. Solar Cells 157, 234 (2016). https://doi.org/10.1016/j.solmat.2016.05.052

    Article  Google Scholar 

  11. G.Q. Zheng, K. Sridharan, Jom 70(8), 1535 (2018). https://doi.org/10.1007/s11837-018-2981-2

    Article  Google Scholar 

  12. H. Sun, J.Q. Wang, Z.J. Li, P. Zhang, X.Z. Su, Solar Energy 171, 320 (2018). https://doi.org/10.1016/j.solener.2018.06.094

    Article  Google Scholar 

  13. B.A. Pint, J.W. McMurray, A.W. Willoughby, J.M. Kurley, S.R. Pearson, M.J. Lance, D.N. Leonard, H.M. Meyer, J. Jun, S.S. Raiman, R.T. Mayescirc, Mater. Corros. 70(8), 1439 (2019). https://doi.org/10.1002/maco.201810638

    Article  Google Scholar 

  14. J. H. De Van Thesis ORNL/TM-2021/1, (1969)

  15. I.N. Ozeryanaya, Metal Sci. Heat Treat. 27(3), 184 (1985). https://doi.org/10.1007/bf00699649

    Article  Google Scholar 

  16. A. Kruizenga, Corrosion Mechanisms in Chloride and Carbonate Salts, Report SAND2012-7594, Sandia National Laboratories, (2012)

  17. W. Ding, H. Shi, Y. **u, A. Bonk, A. Weisenburger, A. Jianu, T. Bauer, Solar Energy Mater. Solar Cells 184, 22 (2018). https://doi.org/10.1016/j.solmat.2018.04.025

    Article  Google Scholar 

  18. R. Pillai, S.S. Raiman, B.A. Pint, J. Nucl. Mater. (2021). https://doi.org/10.1016/j.jnucmat.2020.152755

    Article  Google Scholar 

  19. H.S. Cho, J.W. Van Zee, S. Shimpalee, B.A. Tavakoli, J.W. Weidner, B.L. Garcia-Diaz, M.J. Martinez-Rodriguez, L. Olson, J. Gray, Corrosion 72(6), 742 (2016). https://doi.org/10.5006/1865

    Article  Google Scholar 

  20. B.A.T. Mehrabadi, J.W. Weidner, B. Garcia-Diaz, M. Martinez-Rodriguez, L. Olson, S. Shimpalee, J. Electrochem. Soc. 163(14), C830 (2016). https://doi.org/10.1149/2.0411614jes

    Article  Google Scholar 

  21. J. H. DeVan, R. B. Evans, III, Corrosion Behavior of Reactor Materials in Fluoride Salt Mixtures, Report ORNL-TM-328, https://doi.org/10.2172/4774669, (1962)

  22. H.E. McCoy, R.L. Beatty, W.H. Cook, R.E. Gehlbach, C.R. Kennedy, J.W. Koger, A.P. Litman, C.E. Sessions, J.R. Weir, Nucl. Appl. Technol. 8(2), 156 (1970). https://doi.org/10.13182/Nt70-A28622

    Article  Google Scholar 

  23. G. Zheng, L. He, D. Carpenter, K. Sridharan, J. Nucl. Mater. 482, 147 (2016). https://doi.org/10.1016/j.jnucmat.2016.10.023

    Article  Google Scholar 

  24. C. Falconer, W.H. Doniger, L. Bailly-Salins, E. Buxton, M. Elbakhshwan, K. Sridharan, A. Couet, Corros. Sci. 177, 108955 (2020). https://doi.org/10.1016/j.corsci.2020.108955

    Article  Google Scholar 

  25. C. Falconer, M. Elbakhshwan, W. Doniger, M. Weinstein, K. Sridharan, A. Couet, npj Mater. Degrad. 6(1), 29 (2022). https://doi.org/10.1038/s41529-022-00239-z

    Article  Google Scholar 

  26. S. S. Raiman, J. W. McMurray, R. T. Mayes, C. Abney, K. Myhre, J. R. Keiser, B. R. Betzler, T. Muth, D. Sulejmanovic, Fundamental Studies of Materials Degradation in Molten Chloride Salts Using Targeted Corrosion Testing, Advanced Spectroscopy, and Thermodynamic Modeling, unpublished work (2019)

  27. R. Pillai, W. Sloof, A. Chyrkin, L. Singheiser, W. Quadakkers, Mater. High Temp. 32, 57 (2015)

    Article  Google Scholar 

  28. G.S. Chen, I.W. Sun, K.D. Sienerth, A.G. Edwards, G. Mamantov, J. Electrochem. Soc. 140(6), 1523 (1993). https://doi.org/10.1149/1.2221596

    Article  Google Scholar 

  29. R. T. Mayes, J. M. Kurley III, P. W. Halstenberg, A. McAlister, D. Sulejmanovic, S. S. Raiman, S. Dai, B. A. Pint, Purification of Chloride Salts for Concentrated Solar Applications, Report ORNL/LTR-2018/1052, (2018)

  30. H. Larsson, A. Engström, Acta Materi. 54(9), 2431 (2006). https://doi.org/10.1016/j.actamat.2006.01.020

    Article  Google Scholar 

  31. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner, W. Quadakkers, Corros. Sci. 96, 32 (2015). https://doi.org/10.1016/j.corsci.2015.03.019

    Article  Google Scholar 

  32. A. Chyrkin, W. Sloof, R. Pillai, T. Galiullin, D. Grüner, W. Quadakkers, Mater. High Temp. 32, 102 (2015)

    Article  Google Scholar 

  33. R. Pillai, A. Chyrkin, T. Galiullin, E. Wessel, D. Gruener, W.J. Quadakkers, Corros. Sci. 127, 27 (2017). https://doi.org/10.1016/j.corsci.2017.07.021

    Article  Google Scholar 

  34. T.J. Nijdam, W.G. Sloof, Acta Mater. 56(18), 4972 (2008). https://doi.org/10.1016/j.actamat.2008.06.010

    Article  Google Scholar 

  35. K. Yuan, R. Eriksson, R.L. Peng, X.-H. Li, S. Johansson, Y.-D. Wang, Surf. Coat. Technol. 232, 204 (2013). https://doi.org/10.1016/j.surfcoat.2013.05.008

    Article  Google Scholar 

  36. R. Pillai, M.P. Taylor, T. Galiullin, A. Chyrkin, E. Wessel, H. Evans, W.J. Quadakkers, Mater. High Temp. 35(1–3), 78 (2018)

    Article  Google Scholar 

  37. R. Pillai, E. Wessel, W.J. Nowak, D. Naumenko, W.J. Quadakkers, Jom 70(8), 1520 (2018)

    Article  Google Scholar 

  38. H. Larsson, H. Strandlund, M. Hillert, Acta Mater. 54, 945 (2006)

    Article  Google Scholar 

  39. Thermo-Calc, TCFE11, TCS Fe-based Alloys Database, v11.0, 2020, (2020)

  40. Thermo-Calc, TCNI11, TCS Ni-based superalloys Database, v11.0, 2021, (2021)

  41. Thermo-Calc, MOBNI5, TCS Ni-alloys Mobility Database, v5.1, 2019, (2019)

  42. Thermo-Calc, MOBFE, TCS Steel Mobility Database, v6.0, 2020, (2020)

  43. Z. Tokei, H. Viefhaus, K. Hennesen, H.J. Grabke, Diff. React. 72, 3 (2000). https://doi.org/10.4028/www.scientific.net/SSP.72.3

    Article  Google Scholar 

  44. P. Shewmon, Diffusion in Solids, 2nd edn. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-48206-4

    Book  Google Scholar 

  45. A. Jalowicka, R. Duan, P. Huczkowski, A. Chyrkin, D. Gruner, B.A. Pint, K.A. Unocic, W.J. Quadakkers, Jom 67(11), 2573 (2015)

    Article  Google Scholar 

  46. S.S. Raiman, J.M. Kurley, D. Sulejmanovic, A. Willoughby, S. Nelson, K. Mao, C.M. Parish, M.S. Greenwood, B.A. Pint, J. Nucl. Mater. 561, 153551 (2022). https://doi.org/10.1016/j.jnucmat.2022.153551

    Article  Google Scholar 

  47. S. Liu, X.-X. Ye, S. Yan, X. Wang, B. Leng, X. Zhou, Corros. Sci. 191, 109761 (2021). https://doi.org/10.1016/j.corsci.2021.109761

    Article  Google Scholar 

  48. R. Pillai, H. Ackermann, K. Lucka, Corros. Sci. 69, 181 (2013). https://doi.org/10.1016/j.corsci.2012.11.040

    Article  Google Scholar 

Download references

Acknowledgements

A. Willoughby assisted with the experimental work at ORNL. V. Cox is thanked for hel** with metallography and microstructural characterization respectively. J. Keiser and M. Romedenne are thanked for their valuable comments on the paper. This research was sponsored by the US Department of Energy Office of Nuclear Energy, Molten Salt Reactor Campaign and the Nuclear Energy Advanced Modeling and Simulation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pillai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Sulejmanovic, D., Lowe, T. et al. Establishing a Design Strategy for Corrosion Resistant Structural Materials in Molten Salt Technologies. JOM 75, 994–1005 (2023). https://doi.org/10.1007/s11837-022-05647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05647-9

Navigation