Log in

Theoretical Study of the Water-Gas Shift Reaction Catalyzed by Tungsten Carbonyls

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A density functional theory calculation has been carried out to investigate the mechanism of W(CO)6 and W2(CO)10 catalyzed water-gas-shift reaction (WGSR). The calculations indicate that the bimetallic catalyst (W2(CO)10) would be likely to be more highly active than the mononuclear metal-based catalyst (W(CO)6) due to the possibility of metal–metal cooperativity in reducing the barriers for the WGSR. The energetic span model is a tool to compute catalytic turnover frequencies (TOFs) which is the traditional measure of the efficiency of a catalyst. The one with the highest efficiency usually gives the highest TOF. The bimetallic catalyst (W2(CO)10) exhibits high catalytic activity towards WGSR due to the highest value of the calculated TOF (3.62 × 10−12 s−1, gas phase; 8.74 × 10−15 s−1, solvent phase), which is higher than the value of TOF (8.96 × 10−20 s−1, gas phase; 3.96 × 10−19 s−1, solvent phase) proposed by Kuriakose et al. (Inorg Chem 51:377–385, 2012). Our results will be important for designing a better catalyst for the industrially important reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oetjen HF, Schmidt VM, Stimming U, Trila F (1996) J Electrochem Soc 143:3838–3842

    Article  CAS  Google Scholar 

  2. Lane KR, Lee RE, Sallans L, Squires RR (1984) J Am Chem Soc 106:5768–5772

    Google Scholar 

  3. Sunderlin LS, Squires RR (1993) J Am Chem Soc 115:331–343

    Google Scholar 

  4. Torrent M, Solà M, Frenking G (1999) Organometallics 18:2801–2812

    Article  CAS  Google Scholar 

  5. Barrows SE (2004) Inorg Chem 43:8236–8238

    Article  CAS  Google Scholar 

  6. Zhang FL, Zhao L, Xu C, Chen Y (2010) Inorg Chem 49:3278–3281

    Article  CAS  Google Scholar 

  7. Rozanska X, Vuilleumier R (2008) Inorg Chem 47:8635–8640

    Article  CAS  Google Scholar 

  8. Chen Y, Zhang FL, Xu C, Gao JS, Zhai D, Zhao Z (2012) J Phys Chem A 116:2529–2535

    Article  CAS  Google Scholar 

  9. Schulz H, Gorling A, Hieringer W (2013) Inorg Chem 52:4786–4794

    Article  CAS  Google Scholar 

  10. King AD, King RB, Yang DB (1980) J Chem Soc Chem Commun 11:529–530

    Article  Google Scholar 

  11. Kuriakose N, Kadam S, Vanka KA (2012) Inorg Chem 51:377–385

    Article  CAS  Google Scholar 

  12. Shieh M, Lin SF, Guo YW, Hsu MH, Lai YW (2004) Organometallics 23:5182–5187

    Article  CAS  Google Scholar 

  13. Wigginton JR, Chokshi A, Graham TW, McDonald R, Ferguson MJ, Cowie M (2005) Organometallics 24:6398–6410

    Article  CAS  Google Scholar 

  14. Brooks A, Knox SAR, Stone FGA (1971) J Chem Soc A 3469–3471. doi:10.1039/J19710003469

  15. Ford PC (1981) Acc Chem Res 14:37–42

    Article  Google Scholar 

  16. Laine RM, Rinker RG, Ford PC (1977) J Am Chem Soc 99:252–253

    Article  CAS  Google Scholar 

  17. Kerber RC, Pakkanen T (1979) Inorg Chim Acta 37:61–65

    Article  CAS  Google Scholar 

  18. Gaüdek A, Kochel A, Buzar TS (2003) Organometallics 22:4869–4872

    Article  Google Scholar 

  19. Majumdar M, Sinha A, Ghatak T, Patra SK, Sadhukhan N, Rahaman SMW, Bera JK (2010) Chem Eur J 16:2574–2585

    Article  CAS  Google Scholar 

  20. Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, BakkenV Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 1. Gaussian Inc, Wallingford

    Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  25. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  26. Ishikawa Y, Kawakami K (2007) J Phys Chem A 111:9940–9944

    Article  CAS  Google Scholar 

  27. Arnesen SV, Seip HM (1966) Acta Chem Scand 20:2711–2727

    Article  CAS  Google Scholar 

  28. Ishikawa Y, Hackett P, Rayner DM (1988) J Phys Chem 92:3863–3869

    Article  CAS  Google Scholar 

  29. Peng CY, Ayala PY, Schlege HB (1996) J Comput Chem 17:49–58

    Article  CAS  Google Scholar 

  30. Jonas M, Stefan G (2014) J Phys Chem C 118:7615–7621

    Article  Google Scholar 

  31. Rebecca S, Jens A, Stefan G (2014) J Phys Chem B 118:3431–3440

    Article  Google Scholar 

  32. Kolja T, Alexei VA, Hilke B, Martin K (2011) J Phys Chem A 2011(115):8990–8996

    Google Scholar 

  33. Yu XL, Yu RQ (2013) Ind Eng Chem Res 52:11182–11188

    Article  CAS  Google Scholar 

  34. Aleksandr VM, Christopher JC, Donald GT (2009) J Phys Chem B 113:6378–6396

    Article  Google Scholar 

  35. Li YW, Shi XL, Zhang QZ, Hu JT, Chen JM, Wang WX (2014) Environ Sci Technol 48:5008–5016

    Article  CAS  Google Scholar 

  36. Li YW, Zhang RM, Du LK, Zhang QZ, Wang WX (2016) Catal Sci Technol 2016(6):73–80

    Article  Google Scholar 

  37. Li YW, Zhang RM, Du LK, Zhang QZ, Wang WX (2015) RSC Adv 5:66591–66597

    Article  CAS  Google Scholar 

  38. Kozuch S, Martin JML (2011) ACS Catal 1:246–253

    Article  CAS  Google Scholar 

  39. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402–1414

    Article  CAS  Google Scholar 

  40. Uhe A, Kozuch S, Shaik S (2010) J Comput Chem 32:979–985

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 105088, 2015537, WL2015CXCY-SJ-01) and Graduate Project for Education and Innovation of Shanxi Province and Shanxi Normal University (SD2015CXXM-80, WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Guo, L., Li, A. et al. Theoretical Study of the Water-Gas Shift Reaction Catalyzed by Tungsten Carbonyls. Catal Surv Asia 20, 109–120 (2016). https://doi.org/10.1007/s10563-016-9212-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9212-z

Keywords

Navigation