Log in

Theoretical Investigation of Reverse Water Gas Shift Reaction Catalyzed by Ruthenium Halogen Carbonyl Complexes

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this paper we present theoretical study of the reverse water gas shift (RWGS) reaction catalyzed by ruthenium halogen carbonyl complexes. Three mechanisms, including hydrogen chloride, formic acid and oxidation–reduction mechanism, have been explored by density functional theory. The calculations indicate that the oxidation–reduction mechanism contributes to the TDI and TDTS in the ESM TOF calculations. Bimetallic catalysts would be likely to be more highly active than monometallic catalyst for the RWGS reaction. Among bimetallic catalysts studied, both bimetallic catalysts [Ru(μ-Cl)Cl(CO)3]2 and [Ru(μ-CO)Cl(CO)3]2 shows higher activity than [Ru(μ-Cl)(CO)4]2 catalyst with [Ru(μ-CO)Cl(CO)3]2 considering as the most efficient catalyst for RWGS reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Nature 408:184–187

    Article  CAS  Google Scholar 

  2. Netz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007) Camb Univ Press 29:533–535

    Google Scholar 

  3. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Energy Environ Sci 5(6):7281–7305

    Article  CAS  Google Scholar 

  4. Yang ZZ, He LN, Gao J, Liu AH, Yu B (2012) Energy Environ Sci 5(5):6602–6639

    Article  CAS  Google Scholar 

  5. Centi G, Quadrelli EA, Perathoner S (2013) Energy Environ Sci 6:1711–1731

    Article  CAS  Google Scholar 

  6. Trainham JA, Newman J, Bonino CA, Hoertz PG, Akunuri N (2012) Curr Opin Chem Eng 1:204–210

    Article  CAS  Google Scholar 

  7. Hu B, Guild C, Suib SL (2013) J CO2 Util 1:18–27

    Article  CAS  Google Scholar 

  8. Centi G, Iaquaniello G, Perathoner S (2011) ChemSusChem 4:1265–1273

    Article  CAS  Google Scholar 

  9. Corma A, Garcia H (2013) J Catal 308:168–175

    Article  CAS  Google Scholar 

  10. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) J Am Chem Soc 136(40):14107–14113

    Article  CAS  Google Scholar 

  11. Chen C, Cheng W, Lin S (2000) Catal Lett 68:45–48

    Article  CAS  Google Scholar 

  12. Glezakou V, Dang LX (2009) J Phys Chem C 113:3691–3696

    Google Scholar 

  13. Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA, Alba-Rubio AC, Miller JT, Hermans I, Huber GW, Dumesic JA (2015) J Am Chem Soc 137:10317–10325

    Article  CAS  Google Scholar 

  14. Oshima K, Shinagawa T, Nogami Y, Manabe R, Ogo S, Sekine Y (2013) Catal Today 232:27–32

    Article  Google Scholar 

  15. Wang GC, Nakamura J (2010) J Phys Chem Lett 1:3053–3057

    Article  CAS  Google Scholar 

  16. Ungermann C, Landis V, Moya SA, Cohen H, Walker H, Pearson RG, Rinker RG, Ford PC (1979) J Am Chem Soc 101:5922–5929

    Article  CAS  Google Scholar 

  17. King AD, King DB, Yang DB (1980) J Am Chem Soc 102:1028–1032

    Article  CAS  Google Scholar 

  18. Kaneda K, Hiraki M, Sano K, Imanaka T, Teranishi S (1980) J Mol Catal 9:227–230

    Article  CAS  Google Scholar 

  19. Bricker JC, Nagel CC, Shore SG (1982) J Am Chem Soc 104:1444–1445

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang FL, Xu CM, Gao JS, Zhai D, Zhao Z (2012) J Phys Chem A 116:2529–2535

    Article  CAS  Google Scholar 

  21. Schulz H, Görling A, Hieringer W (2013) Inorg Chem 52:4786–4794

    Article  CAS  Google Scholar 

  22. Jacobs G, Davis BH (2007) Catalysis 20:122–285

    CAS  Google Scholar 

  23. Tsuchiya K, Huang JD, Tominaga KI (2013) ACS Catal 3:2865–2868

    Article  CAS  Google Scholar 

  24. Lugan N, Lavigne G, Soulie JM, Fabre S, Kalck P, Saillard JY, Halet FJ (1995) Organometallics 14:1712–1731

    Article  CAS  Google Scholar 

  25. Elschenbroich C (2006) Organometallics, 3rd edn. Wiley, NewYork

    Google Scholar 

  26. Majumdar M, Sinha A, Ghatak T, Patra SK, Sadhukhan N, Rahaman SMW, Bera JK (2010) Chem Eur J 16:2574–2585

    Article  CAS  Google Scholar 

  27. Tan ST, Kee JW, Fan WY (2011) Organometallics 30:4008–4013

    Article  CAS  Google Scholar 

  28. Sobota M, Schernich S, Schulz H, Hieringer W, Paape N, Wasserscheid P, Görling A, Laurin M, Libuda J (2012) Phys Chem Chem Phys 14(30):10603–10612

    Article  CAS  Google Scholar 

  29. Kuriakose N, Kadam S, Vanka K (2012) Inorg Chem 51:377–385

    Article  CAS  Google Scholar 

  30. Tulloch AP, pence JFT (1972) J Orgonomet Chem 37:2868–2870

    Article  CAS  Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi J, Normand R, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C. 01. Gaussian Inc, Wallingford

    Google Scholar 

  33. Dolg M, Stoll H, Preuss HJ (1989) Chem Phys 90:1730–1734

    CAS  Google Scholar 

  34. Guo L, Cao ZR, Liu NY, An XY, Li AX, Li W, Zheng XL (2016) Int J Hydrog Energy 41:2432–2446

    Article  CAS  Google Scholar 

  35. Laine RM, Rinker RG, Ford PC (1977) J Am Chem Soc 99:252–253

    Article  CAS  Google Scholar 

  36. Barrows SE (2004) Inorg Chem 43:8236–8238

    Article  CAS  Google Scholar 

  37. Rosenberg ML, Krapp A, Tilset M (2011) Organometallics 30:6562–6571

    Article  CAS  Google Scholar 

  38. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabreiel S, Stephens PJ (2002) J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

  39. Li YW, Zhang RM, Du LK, Zhang QZ, Wang WX (2015) Catal Sci Technol 6:73–80

    Article  CAS  Google Scholar 

  40. Li YW, Zhang RM, Du LK, Zhang QZ, Wang WX (2016) Int J Mol Sci 17:1372–1380

    Article  Google Scholar 

  41. Jirkovsky JS, Busch M, Ahlberg E, Panas I, Krtil P (2011) J Am Chem Soc 133:5882–5892

    Article  CAS  Google Scholar 

  42. Chung MK, Ferguson G, Robertson V, Schlaf M (2001) Can J Chem 79:949–957

    CAS  Google Scholar 

  43. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  44. Roberto D, Psaro R, Ugo R (1993) J Organomet Chem 451:123–131

    Article  CAS  Google Scholar 

  45. MerIino S, Montagnoh G (1968) Acta Crystallogr B 24:424–429

    Article  Google Scholar 

  46. Johnson BFG, Johnston RD, Lewis J (1969) J Chem Soc A 5:792–797

    Article  CAS  Google Scholar 

  47. Diz EL, Therrien B, Neels A, Süss-Fink G (2002) Acta Crystallogr 58(8):404–405

    Google Scholar 

  48. Amatore C, Jutand A (1999) J Organomet Chem 576:254–278

    Article  CAS  Google Scholar 

  49. Kozuch S (2012) WIREs Comput Mol Sci 2:795–815

    Article  CAS  Google Scholar 

  50. Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355–3365

    Article  CAS  Google Scholar 

  51. Kozuch S, Shaik S (2008) J Phys Chem A 112:6032–6041

    Article  CAS  Google Scholar 

  52. Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110

    Article  CAS  Google Scholar 

  53. Kozuch S, Martin JML (2013) ACS Catal 1:246–253

    Article  Google Scholar 

  54. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  55. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (SD2015CXXM-80, WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13). Shanxi Normal University graduate student science and technology innovation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1011 KB)

Supplementary material 2 (PDF 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Guo, S. & Guo, L. Theoretical Investigation of Reverse Water Gas Shift Reaction Catalyzed by Ruthenium Halogen Carbonyl Complexes. Catal Surv Asia 21, 185–197 (2017). https://doi.org/10.1007/s10563-017-9236-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9236-z

Keywords

Navigation