Log in

Photosynthetic characteristics and simulation of annual leaf carbon gains of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a temperate agroforestry system

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

A leaf net photosynthesis model is presented driven by light and modulated by temperature and air humidity. From this the seasonal variation of CO2 uptake and release could be modelled to estimate the annual carbon fluxes of sun and shade leaves. In fully expanded leaves light is the major factor determining daily carbon balances, and highest observed daily carbon gains in sun leaves amounted to 748.9 mmol CO2 m−2 day−1 in poplar and to 536.3 mmol CO2 m−2 day−1 in black locust, while the annual carbon gains amounted to 46,824 mol CO2 m−2 in black locust and 66,803 mol CO2 m−2 in hybrid poplar. Results obtained via gas exchange measurements and from the leaf model clearly indicate a potentially better growth performance of the poplar compared to black locust on the investigated site. The presented photosynthesis model provides a good and realistic estimation for seasonal carbon balances on the leaf level for both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baum S, Bolte A, Weih M (2012) High value of short rotation coppice plantations for phytodiversity in rural landscapes. GCB Bioenergy 4:728–738

    Article  Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol Syst 11:287–310

    Article  Google Scholar 

  • Beesk M (2015) Untersuchungen zum Wasser-, Nährstoffhaushalt und zum Wachstum von robinien in Agroforstssystemen in der Niederlausitz. Master-Thesis, Brandenburg University of Technology Cottbus-Senftenberg

  • Beyschlag W, Eckstein J (1998) Stomatal patchiness. Prog Bot 59:283–298

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215–227

    Google Scholar 

  • Böhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley crop** systems in Germany. Agrofor Syst 88:579–591

    Article  Google Scholar 

  • Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72(3):749–766

    Article  Google Scholar 

  • Brilli F, Giolo B, Fares S, Zenone T, Zona D, Gielen B, Loreta F, Janssens I, Ceulemans R (2015) Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season. Geophys Res Abstr 17:EGU-2015-6554

    Google Scholar 

  • Burel F (1996) Hedgerows and their role in agricultural landscapes. Crit Rev Plant Sci 15(2):169–190

    Article  Google Scholar 

  • Burns RM, Honkala BH (eds) (1990) Silvics of North America: vol 1 conifers and vol 2 hardwoods. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC

  • Ceulemans RW, Deraedt W (1999) Production physiology and growth potential of poplars under short-rotation forestry culture. For Ecol Manag 121:9–23

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69:517–523

    Article  PubMed  Google Scholar 

  • Christersson L, Sennerby-Forsse L, Zsuffa L (1993) The role and significance of woody biomass plantations in Swedish agriculture. For Chron 69(6):687–693

    Article  Google Scholar 

  • Cowan IR (1982) Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II—water relations and carbon assimilation. Encyclopedia of plant physiology NS. Springer, Berlin, pp 589–613

    Google Scholar 

  • Cui Q, Feng Z, Pfiz M, Veste M, Küppers M, He K, Gao J (2012) Trade-off between shrub plantation and wind-breaking in the arid sandy lands of Ningxia, China. Pak J Bot 44(5):1639–1649

    Google Scholar 

  • De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Dillen SY, Djomo SN, Al Afas N, Vanbeveren S, Ceulemans R (2013) Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass Bioenergy 56:157–165

    Article  Google Scholar 

  • Dowdeswell WH (1987) Hedgerows and verges. Allen and Unwin, London

    Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  PubMed  CAS  Google Scholar 

  • Eschenbach C (2000) The effect of light acclimation of single leaves on whole tree growth and competition—an application of the tree growth model ALMIS. Ann For Sci 57:599–609

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II: water relations and carbon assimilation. Encyclopedia of plant physiology, new series, vol 12B. Springer, Heidelberg, pp 549–587

    Chapter  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Foote KC, Schaedle M (1976) Diurnal and seasonal patterns of photosynthesis and respiration of Populus tremuloides Michx. Plant Physiol 58(5):651–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gold MA, Hanover JW (1987) Agroforestry systems for the temperate zone. Agrofor Syst 5(2):109–121

    Article  Google Scholar 

  • Gross LJ, Kirschbaum MUF, Pearcy RW (1991) A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation. Plant Cell Environ 14:881–893

    Article  CAS  Google Scholar 

  • Grünewald H, Brandt BK, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29(4):319–328

    Article  Google Scholar 

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2(3):123–133

    Article  Google Scholar 

  • Harley PC, Tenhunen JD, Beyschlag W, Lange OL (1987) Seasonal changes in photosynthetic rates and photosynthetic capacity in leaves of Cistus salvifolius, a European Mediterranean semi-deciduous shrub. Oecologia 74(3):380–388

    Article  PubMed  CAS  Google Scholar 

  • Henzler J (2012) Blattgasaustausch von Pflanzen aus der Taiga Zentral-Alaskas. BSc Thesis, University of Hohenheim

  • Hikosaka K, Ishikawa K, Borjigidal A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57(2):291–302

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Niinemets Ü, Anten NPR (2016) Canopy photosynthesis: from basics to applications. In: Advances in photosynthesis and respiration, vol 42. Springer, Dordrecht

  • Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM (2014) Dynamic photosynthesis in different environmental conditions. J Exp Bot 66(9):2415–2426

    Article  PubMed  CAS  Google Scholar 

  • Kanzler M, Böhm C, Mirck J, Schmitt D, Veste M (2016) Agroforstliche Landnutzung als Anpassungsstrategie an den Klimawandel. Mitt Ges Pflanzenbau 28:126–127

    Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. N Phytol 179:15–32

    Article  Google Scholar 

  • Kirschbaum MUF, Gross LJ, Pearcy RW (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Environ 11:111–121

    Google Scholar 

  • Kirschbaum MUF, Küppers M, Schneider H, Giersch C, Noe S (1998) Modelling of photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates. Planta 2044:16–26

    Google Scholar 

  • Kobza J, Edwards GE (1987) The photosynthetic induction response in wheat leaves: net CO2 uptake, enzyme activation, and leaf metabolites. Planta 171:549–559

    Article  PubMed  CAS  Google Scholar 

  • Koike T (1987) Photosynthesis and expansion in leaves of early, mid and late successional tree species, birch, ash and maple. Photosynthetica 21:503–508

    Google Scholar 

  • Küppers M (1978) Die Regulation der Spaltöffnungen von Corylus avellana L. in Abhängigkeit von Blattwasserzustand und Luftfeuchte. Diploma-Thesis, University of Frankfurt (M)/Bayreuth, p 135

  • Küppers M (1982) Kohlenstoffhaushalt, Wasserhaushalt und Wuchsformen von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. Dissertation, Universität Bayreuth

  • Küppers M (1984a) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. In: E-D Schulze, A Reif, M Küppers (eds) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Akademie für Naturschutz und Landschaftspflege, Laufen/Salzach. Beiheft 3, Teil 1: p 10–102

  • Küppers M (1984b) Carbon relations and competition between woody species in a Central European hedgerow. I. Photosynthetic characteristics. Oecologica 64:332–343

    Article  Google Scholar 

  • Küppers M (1984c) Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway. Oecologica 64:344–354

    Article  Google Scholar 

  • Küppers M (1984d) Carbon relations and competition between woody species in a Central European hedgerow. III. Carbon and water balance on the leaf level. Oecologica 65:94–100

    Article  Google Scholar 

  • Küppers M (1985) Carbon relations and competition between woody species in a Central European hedgerow. IV. Growth form and partitioning. Oecologica 66:343–352

    Article  Google Scholar 

  • Küppers M (1988) Changes in plant ecophysiology across a Central European Hedgerow Ecotone. In: Hansen AJ, Di Castri F (eds) Landscape boundaries. Ecological studies, vol 92. Springer, Heidelberg, pp 285–303

    Chapter  Google Scholar 

  • Küppers M (1989a) Hecken und Flurgehölze – Paradeobjekte für produktions- und populationsbiologische Untersuchungen an Holzgewächsen. Verh Ges Ökol 18:689–700

    Google Scholar 

  • Küppers M (1989b) Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships. Trends Ecol Evol 4:375–379

    Article  PubMed  Google Scholar 

  • Küppers M, Häder D-P (1999) Methodik der Photosyntheseforschung - Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder D-P (ed) Photosynthese. Thieme, Tübingen, pp 21–46

    Google Scholar 

  • Küppers M, List R (1997) MADEIRA—a simulation of carbon gain, allocation, canopy architecture in competing woody plants. In: Jeremonidis G, Vincent JFV (eds) Plant biomechanics 1997, conference proceedings I: papers. Centre for Biomimetics, The University of Reading, Reading, pp 321–329

    Google Scholar 

  • Küppers M, Pfiz M (2009) Role of photosynthetic induction for daily and annual carbon gains of leaves and plant canopies. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico—understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 417–440

    Google Scholar 

  • Küppers M, Schulze E-D (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Aust J Plant Physiol 12:513–526

    Article  Google Scholar 

  • Küppers M, Zech W, Schulze E-D, Beck E (1985) CO2-assimilation, transpiration und Wachstum von Pinus silvestris L. bei unterschiedlicher Magnesiumversorgung. Forstwiss Cent 104:23–36

    Article  Google Scholar 

  • Kurth W (1994) Morphological models of plant growth: possibilities and ecological relevance. Ecol Model 75(76):299–308

    Article  Google Scholar 

  • Laisk A, Nedbal L, Govindjee (2009) Photosynthesis in silico—understanding complexity from molecules to ecosystems. In: Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht

  • Lange OL, Lösch R, Schulze E-D, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86

    Article  PubMed  CAS  Google Scholar 

  • Lange OL, Schulze E-D, Evenari M, Kappen L, Buschbom U (1974) The temperature-related photosynthetic capacity of plants under desert conditions. I. Seasonal changes of the photosynthetic response to temperature. Oecologia 17:97–110

    Article  PubMed  CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin, p 513

    Book  Google Scholar 

  • Lenz KE, Host GE, Roskoski K, Noormets A, Sober A, Karnosky DF (2010) Analysis of a Farquhar–von Caemmerer–Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations. Environ Pollut 158:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Nygren P, Perttunen J, Pallardy SG, Larsen DR (2011) Application of the functional–structural tree model LIGNUM to growth simulation of short-rotation eastern cottonwood. Silva Fenn 45(3):431–474

    Article  Google Scholar 

  • Mantovani D, Veste M, Freese D (2014) Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. N Z J For 44:29

    Article  Google Scholar 

  • Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning L, Freese D (2015a) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Res 58(2):259–274

    Article  Google Scholar 

  • Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D (2015b) Spatial and temporal variation of drought impact on black locust (Robinia pseudoacacia L.) water status and growth. iForest J Biogeosci For 8:743–757

    Article  Google Scholar 

  • Martin MJ, Host GE, Lenz KE, Isebrands JG (2001) Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf level model of ozone effects on photosynthesis to a complex canopy architecture. Environ Pollut 115:425–436

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R (1985a) Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. Doctoral Thesis, University of Bayreuth

  • Maytssek R (1985) The carbon balance of three deciduous larch species and an evergreen spruce species near Bayreuth (W Germany). In: Turner H, Tranquillini (eds) Establishment and tending of subalpine forests: research and management. Proceedings of the 3rd IUFRO workshop P 1.07-00, 1984. Eidg Anst Forstl Vers Ber 270:123–133

    Google Scholar 

  • Maytssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187

    Article  Google Scholar 

  • Matyssek R, Schulze E-D (1987) Heterosis in hybrid larch (Larix decidua × L. leptolepis) II. Growth characteristics. Trees 1:225–231

    Article  Google Scholar 

  • Midgley G, Veste M, von Willert DJ, Davis GW, Steinberg M, Powrie LW (1997) Comparative field performance of three different gas exchange systems. Bothalia 27(1):83–89

    Article  Google Scholar 

  • Mosquera-Losada MR, Moreno G, Pardini A, McAdam JH, Papanastasis V, Burgess PJ, Lamersdorf N, Castro M, Liagre F, Rigueiro-Rodríguez A (2012) Past, present and future of agroforestry systems in Europe. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Advances in agroforestry, vol 9. Springer, Heidelberg, pp 285–312

    Chapter  Google Scholar 

  • Mott KA, Woodrow IE (2000) Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. J Exp Bot 51:399–406

    Article  PubMed  CAS  Google Scholar 

  • Naumberg E, Ellsworth DS (2002) Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiol 22:393–401

    Article  Google Scholar 

  • Nygren P, Kiema P, Rebottaro S (1996) Canopy development, CO2 exchange and carbon balance of a modelled agroforestry tree. Tree Physiol 16:733–745

    Article  PubMed  CAS  Google Scholar 

  • Oren R, Zimmermann R (1989) CO2 assimilation and the carbon balance of healthy and declining Norway spruce stands. Ecol Stud 77:352–369

    Article  Google Scholar 

  • Peak D, Mott KA (2011) A new, vapor-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 34:162–178

    Article  PubMed  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Pearcy RW, Gross LJ, He D (1997) An improved dynamic model of photosynthesis for estimation of carbon gain in sunfleck light regimes. Plant Cell Environ 20:411–424

    Article  Google Scholar 

  • Perttunen J, Sievänen R, Nikinmaa E (1998) LIGNUM: a model combining the structure and the functioning of trees. Ecol Model 108:189–198

    Article  Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer Th, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Raschke K, Patzke J, Daley PF, Berry JA (1990) Spatial and temporal heterogenities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer, Boston, pp 573–578

    Google Scholar 

  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lignaria Hung 4:127–132

    Google Scholar 

  • Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) (2009) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, p 379 S

  • Roden JS (2003) Modelling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees 17:117–126

    Google Scholar 

  • Roden JS, Pearcy RW (1993a) Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207

    Article  PubMed  Google Scholar 

  • Roden JS, Pearcy RW (1993b) Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Oecologia 93:208–214

    Article  PubMed  Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora (Jena) 159:177–232

    Article  Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal control of water loss. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II: water relations and photosynthetic productivity. Encyclopedia of plant physiology, new series, vol 12B. Springer, Heidelberg, pp 181–230

    Chapter  Google Scholar 

  • Schulze E-D, Küppers M (1979) Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. Planta 146:319–326

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1996) Emission of low molecular mass hydrocarbons from plants. Trends Plant Sci 1:78–82

    Article  Google Scholar 

  • Smith J, Pearce BD, Wolfe MS (2012) A European perspective for develo** modern multifunctional agroforestry systems for sustainable intensification. Renew Agric Food Syst 27(4):232–332

    Article  Google Scholar 

  • Smukler SM, Sánchez-Moreno S, Fonte SJ, Ferris H, Klonsky K, O’Geen AT, Scow KM, Steenwerth KL, Jackson LE (2010) Biodiversity and multiple ecosystem functions in an organic farmscape. Agric Ecosyst Environ 139(1–2):80–97

    Article  Google Scholar 

  • Staudt MN, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 82:89–92

    Article  CAS  Google Scholar 

  • Stegemann J, Timm H-C, Küppers M (1999) Simulation of photosynthetic plasticity in response to highly fluctuating light: an empirical model integrating dynamic photosynthetic induction and capacity. Trees 14:145–160

    Article  Google Scholar 

  • Szymanski R (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Populus tremuloides Michx. und Picea glauca Moench in Zentralalaska. Diploma Thesis, University of Hohenheim, p 115

  • Timm H-C, Küppers M, Stegemann J (2004) Non-destructive analysis of architectural expansion and assimilate allocation in different tropical tree saplings: consequences of using steady-state and dynamic photosynthesis models. Ecotropica 10:101–121

    Google Scholar 

  • Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J For Res 27(1):10–29

    Article  Google Scholar 

  • Veste M, Böhm C (2017) Agrarholz - Schnellwachsende Bäume in der Landwirtschaft. Biologie, Ökologie und Management. Springer Spektrum, Heidelberg

    Google Scholar 

  • Veste M, Halke C (2017) Ökophysiologische Plastizität der Photosynthese von Robinien (Robinia pseudoacacia L.) und Hybrid-Pappeln (Populus nigra L. × P. maximowiczii Henry) bei Hitzestress und Sommertrockenheit in der Niederlausitz. In: Proceedings 5. Agroforstforum, Senftenberg, 30 November–1 December 2016, p 1–12

  • Veste M, Herppich W (1995) Diurnal and seasonal fluctuations in the atmospheric CO2 concentration and their influence on the photosynthesis of Populus tremula. Photosynthetica 31(3):371–378

    CAS  Google Scholar 

  • Veste M, Kriebitzsch W-U (2013) Einfluss von Trockenstress auf Photosynthese, Transpiration und Wachstum junger Robinien (Robinia pseudoacacia L.). Forstarchiv 84:35–42

    Google Scholar 

  • Veste M, Gao J, Sun B, Breckle S-W (2006) The green Great Wall—combating desertification in China. Geogr Rundsch Int Ed 2(3):14–20

    Google Scholar 

  • Veste M, Balasus A, Kern J, Herppich WB (2012) Influence of nitrogen fertilization on photosynthesis and leaf nitrogen content of leaves of poplar and willow plants in short rotation plantations. Verh Ges Ökol 42:138

    Google Scholar 

  • Veste M, Böhm C, Quinkenstein A, Freese D (2013) Biologische Stickstoff-Fixierung der Robinie. AFZ-Der Wald 2(2013):40–42

    Google Scholar 

  • Von Stamm S (1994) Linked stomata and photosynthesis model for Corylus avellana (hazel). Ecol Model 75(76):345–357

    Article  Google Scholar 

  • Von Willert DJ, Herppich WB, Mattysek R (1995) Experimentelle Pflanzenökologie - Grundlagen und Anwendungen. Thieme, Stuttgart

    Google Scholar 

  • Wachendorf M (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Betula papyrifera marsh. und Picea mariana mill. in Zentralalaska. Diploma-Thesis, University of Hohenheim, p 111

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081

    Article  PubMed  Google Scholar 

  • Weih M (2004) Intensive short-rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378

    Article  Google Scholar 

  • Wittmann C, Guido A, Pfanz H (2001) Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl Ecol 2:145–154

    Article  Google Scholar 

  • Woodrow IE, Mott KA (1989) Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust J Plant Physiol 16:487–500

    Article  CAS  Google Scholar 

  • Wurzburger N, Miniat CF (2013) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Agrargenossenschaft Forst e.G. for their promotion and management of the agroforestry systems at Neu Sacro. The Institute of Botany (210a) of the University of Hohenheim supported the ecophysiological investigations, the Project “AgroForstEnergie II” (funded by the German Federal Ministry of Food, Agriculture and Consumer Protection and FNR—Fachagentur für Nachwachsende Rohstoffe, Project Number: 22000312) and Vattenfall Energy Crops GmbH provided further technical and logistical support. We wish to thank to anonymous referees for their very helpful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Veste.

Appendix

Appendix

See Table 3.

Table 3 Microclimatic and ecophysiological parameters used

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küppers, M., Schmitt, D., Liner, S. et al. Photosynthetic characteristics and simulation of annual leaf carbon gains of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a temperate agroforestry system. Agroforest Syst 92, 1267–1286 (2018). https://doi.org/10.1007/s10457-017-0071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0071-z

Keywords

Navigation