Modelling of Photosynthetic Response to Environmental Conditions

  • Chapter
Physiological Plant Ecology II

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / B))

Abstract

Photosynthesis is the incorporation of carbon, nitrogen, sulphur and other substances into plant tissue using light energy from the sun. Most of this energy is used for the reduction of carbon dioxide and, consequently, there is a large body of biochemical and biophysical information about photo synthetic carbon assimilation. In an ecophysiological context, we believe that most of today’s biochemical knowledge can be summarized in a few simple equations. These equations represent the rate of ribulose bisphosphate (RuP2)-saturated carboxylation, the ratio of photorespiration to carboxylation, and the rates of electron transport/photophosphorylation and of “dark” respiration in the light. There are many other processes that could potentially limit CO2 assimilation, but probably do so rarely in practice. Fundamentally this may be due to the expense, in terms of invested nitrogen, of the carboxylase and of thylakoid functioning. To reach our final simple equations we must first discuss the biochemical and biophysical structures — as they are understood at present — that finally reduce the vast number of potentially rate-limiting processes to the four or five listed above. A diagrammatic representation of these processes is given in Fig. 16.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Angus JF, Wilson JH (1976) Photosynthesis of barley and wheat leaves in relation to canopy models. Photosynthetica 10: 367–377

    Google Scholar 

  • Armond PA, Schreiber U, Björkmann O (1978) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. II. Light harvesting efficiency and electron transport. Plant Physiol 61: 411–415

    PubMed  CAS  Google Scholar 

  • Arnon DI (1977) Photosynthesis 1950–75: Changing concepts and perspectives. In: Trebst A, Avron M (eds) Photosynthesis I. Photosynthetic electron transport and photophos-phorylation. Encyclopedia of plant physiology New Ser Vol V. Springer, Berlin Heidelberg New York, pp 7–56

    Google Scholar 

  • Azcon-Bieto J, Farquhar GD, Caballero A (1981) Effects of temperature, oxygen concentration, leaf age and seasonal variations on the CO2 compensation point of Lolium perenne L: Comparison with a mathematical model including non photorespiratory CO2 production in the light. Planta 152: 497–504

    CAS  Google Scholar 

  • Badger MR, Andrews TJ (1974) Effects of CO2, O2 and temperature on a higg-affmity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60: 204–210

    PubMed  CAS  Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphos-phate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Washington Yearb 76: 355–361

    Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413

    PubMed  CAS  Google Scholar 

  • Bassham JA (1979) The reductive pentose phosphate cycle. In: Gibbs M, Latzko E (eds) Photosynthesis II. Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology New Ser Vol VI. Springer Berlin Heidelberg New York, pp 9–30

    Google Scholar 

  • Bauwe H, Apel P, Peisker M (1980) Ribulose 1,5-bisphosphate carboxylase/oxygenase and CO2 exchange characteristics in C3 and C3-C4 intermediate species checking mathematical models of carbon metabolism. Photosynthetica 14: 550–556

    CAS  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Google Scholar 

  • Berry JA, Farquhar GD (1978) The CO2 concentrating function of C4 photosynthesis. A biochemical model. In: Hall D, Coombs J, Goodwin T (eds) Proc 4th Int Congr Photosynthes. Biochem Soc London, pp 119–131

    Google Scholar 

  • Berzborn RJ, Müller D (1977) Correlation of grana in chloroplasts with the variability in the size of ‘photophosphorylation unit’. In: Coombs J (ed) Read Abstr, pp 30–31

    Google Scholar 

  • Berzborn RJ, Müller D, Roos P, Andersson B (1981) Significance of different quantitative determinations of photosynthetic ATP-synthase CF1 for heterogeneous CF1 distribution and grana formation. In: Akoyunoglou G (ed) Proc Fifth Int Congr Photosynthesis Vol. III. Balaban Philadelphia, pp 107–120

    Google Scholar 

  • Björkman O (1981) Ecological adaptation of the photosynthetic apparatus. In: Akoyunoglou G (ed) Proc Fifth Int Congr Photosynthesis Vol. VI. Balaban Philadelphia, pp 191–202

    Google Scholar 

  • Björkman O, Badger MR, Armond PA (1980) Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley and Sons, New York, pp 233–249

    Google Scholar 

  • Björkman O, Boardman NK, Anderson JM, Thorne SW, Goodchild DJ, Pyliotis NA (1972) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst Washington Yearb 71: 115–135

    Google Scholar 

  • Boysen Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, Jena 108 pp

    Google Scholar 

  • Boysen Jensen P (1949) The production of matter in agricultural plants and its limitation. Biol Med 21: 1–28

    Google Scholar 

  • Caemmerer von S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Google Scholar 

  • Čatský J, Tichá I (1979) CO2 compensation concentration in bean leaves: Effect of photon flux density and leaf age. Biol Plant 21: 361–364

    Google Scholar 

  • Charles-Edwards DA (1978) Leaf carbon dioxide compensation points at high light flux densities. Ann Bot (London) 42: 733–739

    Google Scholar 

  • Chartier P, Prioul JL (1976) The effects of irradiance, carbon dioxide and oxygen on the net photosynthetic rate of the leaf: A mechanistic model. Photosynthetica 10: 20–24

    CAS  Google Scholar 

  • Collatz GJ (1978) The interaction between photosynthesis and ribulose-P2 concentration — effects of light, CO2 and O2. Carnegie Inst Washington Yearb 77: 248–251

    Google Scholar 

  • Cooke JR, Rand RH (1980) Diffusion resistance models. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models Vol I. CRC Press, Boca Raton, pp 93–122

    Google Scholar 

  • Cramer WA, Whitmarsh J, Widger W (1981) On the properties and function of cytochromes b-559 and f in chloroplast electron transport. In: Akoyunoglou G (ed) Proc Fifth Int Congr Photosynthesis Vol. II. Balaban Philadelphia, pp 509–522

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentrations. Plant Physiol 59: 86–90

    PubMed  CAS  Google Scholar 

  • Enoch HZ, Sacks JM (1978) An empirical model of CO2 exchange of a C3 plant in relation to light, CO2 concentration and temperature. Photosynthetica 12: 150–157

    CAS  Google Scholar 

  • Farquhar GD (1979) Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch Biochem Biophys 193: 456–468

    PubMed  CAS  Google Scholar 

  • Farquhar GD, Caemmerer von S (1981) Electron transport limitations on the CO2 assimilation rate of leaves: a model and some observations in Phaseolus vulgaris L. In: Akoyunoglou G (ed) Proc Fifth Int Congr Photosynthesis Vol. IV. Balaban Philadelphia, pp 163–175

    Google Scholar 

  • Farquhar GD, Raschke K (1978) On the resistance to transpiration of the sites of evaporation within the leaf. Plant Physiol 61: 1000–1005

    PubMed  CAS  Google Scholar 

  • Farquhar GD, Caemmerer von S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    CAS  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9: 121–137

    CAS  Google Scholar 

  • Farron F (1970) Isolation and properties of a chloroplast coupling factor and heat-activated adenosine triphosphatase. Biochemistry 9: 3823–3828

    PubMed  CAS  Google Scholar 

  • Giersch Ch, Heber U, Kobayashi Y, Inoue Y, Shibata K, Heldt HW (1980a) Energy charge, photophosphorylation potential and proton motive force in chloroplasts. Biochim Biophys Acta 590: 59–73

    PubMed  CAS  Google Scholar 

  • Giersch Ch, Heber U, Krause GH (1980 b) ATP transfer from chloroplasts to the cytosol of leaf cells during photosynthesis and its effect on leaf metabolism. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 65–79

    Google Scholar 

  • Goudriaan J, Laar van HH (1978) Relations between leaf resistance CO2-concentration and CO2-assimilation in maize, bean, lalang grass and sunflower. Photosynthetica 12: 241–249

    CAS  Google Scholar 

  • Graham D, Chapman EA (1979) Interactions between photosynthesis and respiration in higher plants. In: Gibbs M, Latzko E (eds) Photosynthesis II: Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology New Ser Vol VI. Springer, Berlin Heidelberg New York, pp 150–162

    Google Scholar 

  • Hall A (1971) A model of leaf photosynthesis and respiration. Carnegie Inst Washington Yearb 70: 530–540

    Google Scholar 

  • Hall A (1979) A model of leaf photosynthesis and respiration for predicting carbon dioxide assimilation in different environments. Oecologia 143: 299–316

    Google Scholar 

  • Hall A, Björkman O (1975) A model of leaf photosynthesis and respiration. In: Gates D, Schmerl R (eds) Perspectives of biophysical ecology. Ecol Stud Vol 12. Springer, Berlin Heidelberg New York, pp 55–72

    Google Scholar 

  • Heber Uh, Hank EU, Jensen M, Koster S (1978) Regulation of photosynthetic electron transport in intact chloroplasts and leaves of Spinacia oleraceae L. Planta 143: 41–49

    CAS  Google Scholar 

  • Heber U, Santarius KA (1970) Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch 25b: 718–728

    Google Scholar 

  • Heldt HW, Sauer F (1971) The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta 234: 83–91

    PubMed  CAS  Google Scholar 

  • Hesketh JD (1980) Predicting canopy photosynthesis from gas exchange studies in controlled environments. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem model Vol I. CRC Press, Boca Raton, pp 37–50

    Google Scholar 

  • Hochman Y, Carmeli C (1981) Binding of manganese ions to CF1 and their effect on the kinetics of ATPase activity. In: Akoyunoglou G (ed) Proc Fifth Int Congr Photosynthesis Vol. II. Balaban Philadelphia, pp 821–827

    Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21: 540–547

    CAS  Google Scholar 

  • Jensen RG, Bahr JT (1977) Ribulose 1,5-bisphosphate carboxylase-oxygenase. Annu Rev Plant Physiol 28: 379–400

    CAS  Google Scholar 

  • Johnson F, Eyring H, Williams R (1942) The nature of enzyme inhibitions in bacterial luminescence: Sulfanilamide, urethane, temperature, and pressure. J Cell Comp Physiol 20: 247–268

    CAS  Google Scholar 

  • Jolliffe PA, Tregunna EB (1968) Effect of temperature, CO2 concentration, and light intensity on oxygen inhibition of photosynthesis in wheat leaves. Plant Physiol 43: 902 906

    Google Scholar 

  • Jordan DB, Ogren WL (1981) A sensitive assay procedure for simultaneous determinations of ribulose-1-5, bisphosphate carboxylase and oxygenase activities. Plant Physiol 67: 237–245

    PubMed  CAS  Google Scholar 

  • Junge W (1977) Physical aspects of light harvesting, electron transport and electrochemical potential generation in photosynthesis of green plants. In: Trebst A, Avron M (eds) Photosynthesis I. Photosynthetic electron transport and photophosphorylation. Encyclopedia of plant physiology new Ser Vol V. Springer, Berlin Heidelberg New York, pp 59–93

    Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM, Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature (London) 275: 741–743

    Google Scholar 

  • Kirk JTO, Tilney-Bassett RAE (1978) The plastids, 2nd edn. Elsevier/North-Holland Biomedical Press, Amsterdam New York 960 pp

    Google Scholar 

  • Krause GH, Heber U (1976) Energetics of intact chloroplasts. In: Barber J (ed) The intact chloroplast. Academic Press, London New York, pp 171–214

    Google Scholar 

  • Ku S, Edwards G (1977a) Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol 59: 986–990

    PubMed  CAS  Google Scholar 

  • Ku S, Edwards G (1977b) Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol 59: 991–999

    PubMed  CAS  Google Scholar 

  • Ku S, Edwards G (1978) Oxygen inhibition of photosynthesis. III. Temperature dependence of quantum yield and its relation to O2/CO2 solubility ratio. Planta 140: 1–6

    CAS  Google Scholar 

  • Laing WA, Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159: 563–570

    PubMed  CAS  Google Scholar 

  • Laing WA, Ogren W, Hageman R (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose-1,5-diphosphate carboxylase. Plant Physiol 54: 678–685

    PubMed  CAS  Google Scholar 

  • Laisk A (1970) A model of leaf photosynthesis and photorespiration. In: Prediction and measurement of photosynthetic productivity. Proc IBP/PP Tech Meet Třeboň 1969. PUDOC, Wageningen, pp 295–306

    Google Scholar 

  • Laisk A (1977) Modelling of the closed Calvin cycle. In: Unger K (ed) Biophysikalische Analyse pflanzlicher Systeme. Fischer, Jena, pp 175–182

    Google Scholar 

  • Lange OL, Geiger IL, Schulze E-D (1977) Ecophysiological investigations on lichens of the Negev Desert. V. A model to simulate net photosynthesis and respiration of Ramalina maciformis. Oecologia 28: 247–259

    Google Scholar 

  • Leegood RC, Walker DA (1980) Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch Biochem Biophys 200: 575–582

    PubMed  CAS  Google Scholar 

  • Lendzian K, Bassham JA (1976) NADPH/NADP+ ratios in photosynthesising reconstituted chloroplasts. Biochim Biophys Acta 430: 478–489

    PubMed  CAS  Google Scholar 

  • Lilley RMcC, Chon CJ, Mosbach A, Heldt HW (1977) The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro. Biochim Biophys Acta 460: 259–272

    PubMed  CAS  Google Scholar 

  • Lilley RMcC, Walker DA (1979) Studies with the reconstituted chloroplast system. In: Gibbs M, Latzko E (eds) Photosynthesis II: Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology New Ser vol VI. Springer, Berlin Heidelberg New York, pp 41–53

    Google Scholar 

  • Longstreth DJ, Nobel PS (1980) Nutrient influences on leaf photosynthesis. Effects of nitrogen, phosphorus and potassium for Gossypium hirsutum L. Plant Physiol 65: 541–543

    PubMed  CAS  Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15: 529–536

    PubMed  CAS  Google Scholar 

  • Lorimer GH, Woo KC, Berry JA, Osmond CB (1978) The C2 photorespiratory carbon oxidation cycle in leaves of higher plants: Paths and consequences. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77. Biochem Soc London, pp 311–322

    Google Scholar 

  • Mangat BS, Levin WB, Bidwell RGS (1974) The extent of dark respiration in illuminated leaves and its control by ATP levels. Can J Bot 52: 673–681

    CAS  Google Scholar 

  • Marsho TV, Behrens PW, Radmer RJ (1979) Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach. Plant Physiol 64: 656–659

    PubMed  CAS  Google Scholar 

  • McCarty RE (1979) Roles of a coupling factor for photo-phosphorylation in chloroplasts. Annu Rev Plant Physiol 30: 79–104

    CAS  Google Scholar 

  • Medina E (1971) Relationships between nitrogen level, photosynthetic capacity and carboxydismutase activity in Atriplexpatula leaves. Carnegie Inst Washington Yearb 69: 655–662

    Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    PubMed  CAS  Google Scholar 

  • Meidner H (1970) Precise measurements of carbon dioxide exchange by illuminated leaves near the compensation point. J Exp Bot 21: 1067–1075

    Google Scholar 

  • Melis A, Brown JS (1980) Stoichiometry of System I and System II reaction centres and of plastoquinone in different photosynthetic membranes. Proc Natl Acad Sci USA 77: 4712–4716

    PubMed  CAS  Google Scholar 

  • Monsi M, Uchijima Z, Oikawa T (1973) Structure of foliage canopies and photosynthesis. Annu Rev Ecol Syst 4: 301–327

    Google Scholar 

  • Morot-Gaudry JF, Farineau J, Huet JC (1980) Oxygen effect on photosynthetic and glycolate pathways in young maize leaves. Plant Physiol 66: 1079–1084

    PubMed  CAS  Google Scholar 

  • Nobel PS, Zaragoza LJ, Smith WK (1975) Relation between mesophyll surface area, photosynthetic rate and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiol 55: 1067–1070

    PubMed  CAS  Google Scholar 

  • Nolan WG, Smillie RM (1976) Multi-temperature effects on Hill reaction activity of barley chloroplasts. Biochim Biophys Acta 440: 461–475

    PubMed  CAS  Google Scholar 

  • Parkhurst DF (1977) A three-dimensional model for CO2 uptake by continuously distributed mesophyll in leaves. J Theor Biol 67: 471–488

    PubMed  CAS  Google Scholar 

  • Peisker M (1974) A model describing the influence of oxygen on photosynthetic carboxylation. Photosynthetica 8: 47–50

    CAS  Google Scholar 

  • Peisker M (1976) Ein Modell der Sauerstoffabhängigkeit des photosynthetischen CO2-Gaswechsels von C3-Pflanzen. Kulturpflanze 24: 221–235

    CAS  Google Scholar 

  • Peisker M (1978a) Der Einfluß von Sauerstoff auf die CO2-Kompensationskonzentration von C3- und C4-Pflanzen und von Intermediärformen. Kulturpflanze 26: 81–98

    CAS  Google Scholar 

  • Peisker M (1978b) A comment on the effects of carbon dioxide, oxygen and temperature on photosynthetic quantum yield in C3 plants. Acta Physiol Plant 1: 23–26

    CAS  Google Scholar 

  • Peisker M, Apel P (1971) Untersuchungen zum Einfluß von Sauerstoff auf den CO2-Gaswechsel assimilierender Blätter. Biochem Physiol Pflanz 162: 165–176

    Google Scholar 

  • Peisker M, Tichá I, Apel P (1979) Variations in the effect of temperature on oxygen dependence of CO2 gas exchange in wheat leaves. Biochem Physiol Pflanz 174: 391–397

    CAS  Google Scholar 

  • Peisker M, Tichá I, Cătský J (1981) Ontogenetic changes in the internal limitations to bean-leaf photosynthesis. 7. Interpretations of the linear correlation between CO2 compensation concentration and CO2 evolution in darkness. Photosynthetica 15: 161–168

    CAS  Google Scholar 

  • Pike CS, Berry JA (1979) Phase separation temperatures of phospholipids from warm and cool climate plants. Carnegie Inst Washington Yearb 78: 163–168

    Google Scholar 

  • Powles SB, Critchley C (1980) Effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol 65: 1181–1187

    PubMed  CAS  Google Scholar 

  • Preiss J, Kosuge T (1976) Regulation of enzyme activity in metabolic pathways. In: Bonner J, Varner JE (eds) Plant biochemistry, 3rd edn. Academic Press, London New York, pp 277–336

    Google Scholar 

  • Radmer R, Kok B, Ollinger O (1978) Kinetics and apparent KM of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 915–917

    PubMed  CAS  Google Scholar 

  • Raison JK, Berry JA (1979) Viscotropic denaturation of chloroplast membranes and acclimation to temperature by adjustment of lipid viscosity. Carnegie Inst Washington Yearb 78: 149–152

    Google Scholar 

  • Rand RH (1977) Gaseous diffusion in the leaf interior. Trans Am Soc Agric Eng 20: 701–704

    Google Scholar 

  • Rand RH (1978) A theoretical analysis of CO2 absorption in sun versus shade leaves. J Biomech Eng 100: 20–24

    Google Scholar 

  • Rathnam CKM, Chollet R (1980) Photosynthetic carbon metabolism in C4 plants and C3-C4 intermediate species. Prog Phytochem 6: 1–48

    CAS  Google Scholar 

  • Raven JA (1972) Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathway in illuminated green cells. New Phytol 71: 227–247

    CAS  Google Scholar 

  • Raven JA, Glidewell SM (1981) Processes limiting carboxylation efficiency. In: Johnson CB (ed) Processes limiting plant productivity. Butterworth, London, pp 109–136

    Google Scholar 

  • Robinson RP, Walker DA (1980) The significance of light activation of enzymes during the induction phase of photosynthesis in isolated chloroplasts. Arch Biochem Biophys 202: 617–623

    PubMed  CAS  Google Scholar 

  • Sharpe PSH, De Michelle DW (1977) Reaction kinetics of Poikilothermic development. J Theor Biol 64: 649–670

    PubMed  CAS  Google Scholar 

  • Shavit N (1980) Energy transduction in chloroplasts: Structure and function of the ATPase complex. Annu Rev Biochem 49: 111–138

    PubMed  CAS  Google Scholar 

  • Shin M (1971) Ferredoxin-NADP reductase from spinach. In: San Pietro A (ed) Methods in enzymology Vol 23. Academic Press, London New York, pp 440–447

    Google Scholar 

  • Shin M, Oshino R (1978) Ferredoxin-sepharose 4 B as a tool for the purification of ferredoxin-NADP+ reductase. J Biochem (Tokyo) 83: 357–361

    CAS  Google Scholar 

  • Shin M, Wakita R, Yamasaki Y, Oshino R (1981) Interrelation of two forms of ferredoxin-NADP+ reductase with different molecular weights. Plant Cell Physiol 22: 461–464

    Google Scholar 

  • Siggel U (1976) The function of plastoquinone as electron and proton carrier in photosynthesis. Bioelectrochem Bioenerg 3: 302–318

    CAS  Google Scholar 

  • Sinclair TR, Goudriaan J, Wit de CT (1977) Mesophyll resistance and CO2 compensation concentration in leaf photosynthesis models. Photosynthetica 11: 56–65

    CAS  Google Scholar 

  • Sinclair TR, Rand RH (1979) Mathematical analysis of cell CO2 exchange under high CO2 concentrations. Photosynthetica 13: 279–244

    Google Scholar 

  • Sommerville CR, Ogren WL (1979) A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature (London) 280: 833–835

    Google Scholar 

  • Stitt M, Wirtz W, Heldt HW (1980) Metabolite levels during induction in the chloroplast and extra chloroplast compartments of spinach protoplasts. Biochim Biophys Acta 593: 85–102

    PubMed  CAS  Google Scholar 

  • Strotmann H, Hesse H, Edelmann K (1973) Quantitative determination of coupling factor CF1 of chloroplasts. Biochim Biophys Acta 314: 202–210

    PubMed  CAS  Google Scholar 

  • Tenhunen JD, Weber J, Filipek L, Gates D (1977) Development of a photosynthesis model with an emphasis on ecological applications. III. Carbon dioxide and oxygen dependencies. Oecologia 30: 189–207

    Google Scholar 

  • Tenhunen JD, Hesketh JD, Gates DM (1980a) Leaf photosynthesis models. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models Vol I. CRC Press, Boca Raton, pp 123–182

    Google Scholar 

  • Tenhunen JD, Hesketh JD, Harley PC (1980b) Modelling C3 respiration in the light. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models Vol II. CRC Press, Boca Raton, pp 17–47

    Google Scholar 

  • Tenhunen JD, Yocum CS, Gates DM (1976) Development of a photosynthesis model with an emphasis on ecological applications. I. Theory. Oecologia 26: 89–100

    Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65: 114–120

    PubMed  CAS  Google Scholar 

  • Thornley J (1976) Mathematical models in plant physiology — a quantitative approach to problems in plant and crop physiology. Academic Press, London New York 318 pp

    Google Scholar 

  • Viil J, Laisk A, Oja V, Pärnik T (1977) Enhancement of photosynthesis caused by oxygen under saturating irradiance and high CO2 concentrations. Photosynthetica 11: 251–259

    CAS  Google Scholar 

  • Walker DA (1976) CO2 fixation by intact chloroplasts: Photosynthetic induction and its relation to transport phenomena and control mechanisms. In: Barber J (ed) The intact chloroplast. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 235–278

    Google Scholar 

  • Walker DA, Robinson SP (1978) Regulation of photosynthetic carbon carbon assimilation. In: Siegelman HW, Hind G (eds) Photosynthetic carbon assimilation. Plenum, New York London, pp 43–59

    Google Scholar 

  • Wareing PF, Khalifa MM, Treharne KJ (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature (London) 220: 453–457

    CAS  Google Scholar 

  • Weis E (1981) Reversible heat inactivation of the Calvin cycle: A possible mechanism of the temperature regulation of photosynthesis. Planta 151: 33–39

    CAS  Google Scholar 

  • West KR, Wiskich JT (1968) Photosynthetic control by isolated pea chloroplasts. Biochem J 109: 527–532

    PubMed  CAS  Google Scholar 

  • Wirtz W, Stitt M, Heldt HW (1980) Enzymic determination of metabolites in the subcellular compartments of spinach chloroplasts. Plant Physiol 66: 187–193

    PubMed  CAS  Google Scholar 

  • Wit de CT (1965) Photosynthesis of leaf canopies. Agric Res Rep 663: 1–57

    Google Scholar 

  • Wong SC (1979) Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen and photosynthetic capacity in C3 and C4 plants. Oecologia 44: 68–74

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature (London) 282: 424–426

    Google Scholar 

  • Woo KC, Berry JA, Turner GL (1978) Release and refixation of ammonia during photorespiration. Carnegie Inst Washington Yearb 77: 240–245

    Google Scholar 

  • Woodrow IE, Walker DA (1980) Light-mediated activation of stromal sedoheptulose-1,7-bisphosphate. Biochem J 191: 845–849

    PubMed  CAS  Google Scholar 

  • Yeoh H-H, Badger MR, Watson L (1981) Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylases among plants. Plant Physiol 67: 1151–1155

    PubMed  CAS  Google Scholar 

  • Yocum CS, Lommen PW (1975) Mesophyll resistances. In: Gates DM, Schmerl RD (eds) Perspectives of biophysical ecology. Ecol Stud Vol 12. Springer, Berlin Heidelberg New York, pp 45–54

    Google Scholar 

  • Younis HM, Winget GD, Racker E (1977) Requirement of the δ subunit of chloroplast coupling factor 1 for photophosphorylation. J Biol Chem 252: 1814–1818

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Farquhar, G.D., von Caemmerer, S. (1982). Modelling of Photosynthetic Response to Environmental Conditions. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology II. Encyclopedia of Plant Physiology, vol 12 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68150-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68152-3

  • Online ISBN: 978-3-642-68150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation