Log in

Effects of pulse voltage on piezoelectric micro-jet for lubrication

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A novel piezoelectric micro-jet for bearing lubrication is presented in this paper, and the micro-jet is working at the slap** mode. The micro-jet is embedded in the bearing system, and add little mass or volume of the system. In order to meet the different requirements for different applications and to improve the injection performance of the micro-jet, the trapezoidal wave is selected as the pulse voltage by analyzing the Fourier expansion of different pulse forms. And the influences of the parameters of the trapezoidal wave are analyzed by experiments. The injection status of the micro-jet and the mass of the droplet under single pulse voltage are obtained. The recommended exciting method for different requirements are given by analyzing the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Boehm RD, Daniels J, Stafslien S, Nasir A, Lefebvre J, Narayan RJ (2015) Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases 10:10. doi:10.1116/1.4913378

    Article  Google Scholar 

  • Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28:314–321. doi:10.1147/rd.283.0314

    Article  Google Scholar 

  • Fan XQ, Wang LP, Li W, Wan SH (2015) Improving tribological properties of multialkylated cyclopentanes under simulated space environment: two feasible approaches. ACS Appl Mat Interfaces 7:14359–14368. doi:10.1021/acsami.5b03088

    Article  Google Scholar 

  • Glynne-Jones P, Coletti M, White NM, Gabriel SB, Bramanti C (2010) A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines. Acta Astronaut 67:194–203. doi:10.1016/j.actaastro.2010.01.027

    Article  Google Scholar 

  • He MW, Sun LL, Hu KY, Zhu YL, Chen HN (2015) Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction. J Cent South Univ 22:3925–3934. doi:10.1007/s11771-015-2937-4

    Article  Google Scholar 

  • Kim CS, Park S-J, Sim W, Kim Y-J, Yoo Y (2009) Modeling and characterization of an industrial inkjet head for micro-patterning on printed circuit boards. Comput Fluids 38:602–612. doi:10.1016/j.compfluid.2008.06.003

    Article  Google Scholar 

  • Lee HS, Park I, Jeon KS, Lee EH (2010) Fabrication of micro-lenses for optical interconnection using micro ink-jetting technique. Microelectron Eng 87:1447–1450. doi:10.1016/j.mee.2009.11.116

    Article  Google Scholar 

  • Li K, Liu J-K, Chen W-S, Zhang L, Huang Z-L (2015) Acoustic simulation of the slap** mode of piezoelectric micro-jet. In: Piezoelectricity, acoustic waves, and device applications (SPAWDA), 2015 Symposium on, 30 Oct 2015–2 Nov 2015, pp 115–119. doi:10.1109/SPAWDA.2015.7364453

  • Li K, Liu J, Chen W, Ye L, Zhang L (2016) A novel bearing lubricating device based on the piezoelectric micro-jet. Appl Sci 6:38. doi:10.3390/app6020038

    Article  Google Scholar 

  • Sathyan K, Hsu HY, Lee SH, Gopinath K (2011) Development of a centrifugal oil lubricator for long-term lubrication of spacecraft attitude control systems—experimental evaluation. Tribol Trans 54:832–839. doi:10.1080/10402004.2011.606959

    Article  Google Scholar 

  • Stumpf F, Schoendube J, Gross A, Rath C, Niekrawietz S, Koltay R, Roth G (2015) Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation. Biosens Bioelectron 69:301–306. doi:10.1016/j.bios.2015.03.008

    Article  Google Scholar 

  • Vattikuti SVP, Byon C, Reddy CV, Venkatesh B, Shim J (2015) Synthesis and structural characterization of MoS2 nanospheres and nanosheets using solvothermal method. J Mater Sci 50:5024–5038. doi:10.1007/s10853-015-9051-8

    Article  Google Scholar 

  • Voevodin AA, O’Neill JP, Zabinski JS (1999) Nanocomposite tribological coatings for aerospace applications. Surf Coat Technol 116–19:36–45

    Article  Google Scholar 

  • Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation☆. Phys Rep 491:77–177. doi:10.1016/j.physrep.2010.03.003

    Article  Google Scholar 

  • Zhang SW, Hu LT, Qiao D, Feng DP, Wang HZ (2013) Vacuum tribological performance of phosphonium-based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes. Tribol Int 66:289–295. doi:10.1016/j.triboint.2013.06.012

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (51075082, 51375107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-kao Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendix: The coefficient of Eq. (6)

Appendix: The coefficient of Eq. (6)

$$\begin{aligned} a^{\prime}_{n} & = T_{f} \cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right) - 2T_{r} \cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right) - 2T_{r} \cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right) - T_{r} \cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) \\ & \quad + 4T_{r} \cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right)\sin^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) + 2T_{r} \cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) \\ & \quad + 2T_{r} \cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) - \frac{1}{2}T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{f} }}{T}n\pi } \right) \\ & \quad - T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{h} }}{T}n\pi } \right) - \frac{1}{2}T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{f} }}{T}n\pi } \right) \\ & \quad + T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) + T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{f} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right) \\ & \quad + T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{f} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right) + T_{r} - T_{f} \\ \end{aligned}$$
$$\begin{aligned} b^{\prime}_{n} & = 2T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right) + 2T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right) + T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) \\ & \quad + T_{r} \sin \left( {\frac{{2T_{f} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right) + T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) + T_{r} \sin \left( {\frac{{2T_{f} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right) \\ & \quad - 2T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) - 2T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{f} }}{T}n\pi } \right) \\ & \quad - 2T_{r} \sin \left( {\frac{{2T_{f} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{r} }}{T}n\pi } \right)\cos^{2} \left( {\frac{{T_{h} }}{T}n\pi } \right) + \frac{1}{2}T_{f} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right) - T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right) \\ & \quad - T_{r} \sin \left( {\frac{{2T_{h} }}{T}n\pi } \right) - \frac{1}{2}T_{r} \sin \left( {\frac{{2T_{f} }}{T}n\pi } \right) + \frac{1}{2}T_{r} \sin \left( {\frac{{2T_{r} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{h} }}{T}n\pi } \right)\sin \left( {\frac{{2T_{f} }}{T}n\pi } \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Liu, Jk., Chen, Ws. et al. Effects of pulse voltage on piezoelectric micro-jet for lubrication. Microsyst Technol 23, 3081–3089 (2017). https://doi.org/10.1007/s00542-016-3080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3080-3

Keywords

Navigation