Log in

Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand (DoD) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling (LEM) and the artificial bee colony (ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model (DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SINGH M, HAVERINEN H M, DHAGAT P, JABBOUR G E. Inkjet printing: Process and its applications [J]. Advanced Materials, 2010, 22: 673–685.

    Article  Google Scholar 

  2. MACDONALD E, SALAS R, ESPALIN D, PEREZ M, AGUILERA E, MUSE D, WICKER R B. 3D printing for the rapid prototy** of structural electronics [J]. IEEE Access, 2014, 2: 234–242.

    Article  Google Scholar 

  3. CHEUNG C L, LOOI T, LENDVAY T S, DRAKE J M, FARHAT W A. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty [J]. Journal of Surgical Education, 2014, 71(5): 762–767.

    Article  Google Scholar 

  4. JAEHYUNG H, ALAN W, ANTOINE K. Energetics of metal–organic interfaces: New experiments and assessment of the field [J]. Materials Science and Engineering R, 2009, 64: 1–31.

    Article  Google Scholar 

  5. BYUNG J K, JE J H. Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate [J]. Thin Solid Films, 2010, 518: 2890–2896.

    Article  Google Scholar 

  6. VILLANI F, VACCA P, NENNA G, VALENTINO O, BURRASCA G, FASOLINO T, MINARINI C, SALA D J. Inkjet printed polymer layer on flexible substrate for OLED applications [J]. The Journal of Physical Chemistry, 2009, 113(30): 13398–13402.

    Google Scholar 

  7. LIOUA J C, TSENGA F. Multi-dimensional data registration CMOS/MEMS integrated inkjet printhead [J]. Journal of Microelectromechanical Systems, 2011, 19(4): 961–972.

    Article  Google Scholar 

  8. MIETTINEN J, KAIJA K, MANTYSALO M, MANSIKKAMAKI P, KUCHIKI M, TSUBOUCHI M, RONKKA R, HASHIZUME K, KAMIGORI A. Molded substrates for inkjet printed modules [J]. Components and Packaging Technologies, IEEE Transactions on, 2009, 32: 293–301.

    Article  Google Scholar 

  9. SILVERBROOK K. Printhead with multiple actuators in each chamber: US7708387 B2 [P]. 2010.

    Google Scholar 

  10. SANG L, HONG Y, WANG F. Investigatin of viscosity effect on droplet formation in T-shaped micro-channels by numerical and analytical methods [J]. Microfluidics and Nanofluidics, 2009, 6: 6621–6635.

    Article  Google Scholar 

  11. LIU **g, TAN S, YAP Y F, NG M Y, NGUYEN N T. Numerical and experimental investigations of the formation process of ferrofluid droplets [J]. Microfluidics and Nanofluidics, 2011, 11: 177–187.

    Article  Google Scholar 

  12. SARRAZIN F, LOUBIÉRE K, PRAT L, GOURDON C, BONOMETTI T, MAGNAUDET J. Experimental and numerical study of droplet hydrodynamics in microchannels [J]. AIChE Journal, 2006, 52(12): 4061–4070.

    Article  Google Scholar 

  13. XING **u-qing, BUTLER D L, NG S H, WANG Zhen-feng, DANYLUK S, YANG Chun. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model [J]. J Colloid Interface, 2007, 311(2): 609–618.

    Article  Google Scholar 

  14. WASSINK G. Inkjet printhead performance enhancement by feedforward input design based on two-port modeling [D]. Delft University of Technology, 2007.

    Google Scholar 

  15. SEITZ H, HEINZL J. Modeling of a microfluidic device with piezoelectric actuators [J]. Journal of Micromechanics and Microengineering, 2004, 14: 1140–1147.

    Article  Google Scholar 

  16. REIS N, AINSLEY C, DERBY B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors [J]. Journal of Applied Physics, 2005, 97: 094903-1-6.

  17. CHUNG J, KO S, GRIGOROPOULOS C P, BIERI N R, DOCKENDORF C, POULIKAKOS D. Damage-free low temperature pulsed laser printing of gold nanoinks on polymers [J]. Journal of Heat Transfer, 2005, 127(7): 724–732.

    Article  Google Scholar 

  18. KWON K. Waveform design methods for piezo inkjet dispensers based on measured meniscus motion [J]. Journal of Microelectromechanical, Systems, 2009, 18(5): 1118–1125.

    Article  Google Scholar 

  19. GALLAS Q, HOLAMAN R, NISHIDA T, CARROLL B, SHEPLAK M, CATTAFESTA L. Lumped element modeling of piezoelectricdriven synthetic jet actuators [J]. AIAA Journal, 2003, 41(2): 240–247.

    Article  Google Scholar 

  20. PRASAD S. Two-Port electroacoustic model of a piezoelectric composite circular plate [D]. Florida, America: University of Florida, 2002.

    Book  Google Scholar 

  21. BLACKSTOCK D T. Fundamentals of physical acoustics [M]. New York: John Wiley & Sons, Inc., 2000: 145.

    Google Scholar 

  22. WHITE F M. Fluid mechanics [M]. New York: McGraw-Hill, Inc., 1979: 377–379.

    Google Scholar 

  23. KWON K S, KIM W. A waveform design method for high-speed inkjet printing based on self-sensing measurement [J]. Sensors and Actuators A: Physical, 2007, 140(1): 75–83.

    Article  Google Scholar 

  24. GAN H Y, SHAN X, ERIKSSON T, LOK B K, LAM Y C. Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation [J]. Journal of Micromechanics and Microengineering, 2009, 19(5): 055010-1-8.

    Article  Google Scholar 

  25. Konica minolta inkjet head application note-KM1024 series [R]. Tokyo, Japan: Konica Minolta IJ Technologies. Inc, 2009.

  26. KARABOGA D. An idea based on honey bee swarm for numerical optimization [R]. Kayseri, Turkey: Computer Engineering Department, Engineering Faculty, Erciyes University, 2005.

    Google Scholar 

  27. KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) [J]. Applied Soft Computing, 2008, 8(1): 687–697.

    Article  Google Scholar 

  28. PIEFORT V. Finite element modelling of piezoelectric active structures [R]. Bruxelles, Belgium: Dissertation, Department of Mechanical Engineering and Robotics, Universite Libre de Bruxelles, 2001.

    Google Scholar 

  29. CONSTANTINESCU F, GHEORGHE A G, NITESCU M. New circuit models of power BAW resonators [C]// European Microwave Integrated Circuit Conference, European Microwave Week. 2007: 599–603.

    Google Scholar 

  30. ALBAREDA A, PÉREZ R. Non-linear behaviour of piezoelectric ceramics [J]. Springer Series in Materials Science, 2011, 140: 681–726.

    Article  Google Scholar 

  31. GOLUB G, PEREYRA V. Separable nonlinear least squares: The variable projection method and its applications [J]. Inverse Problems, 2003, 19: R1–R26.

    Article  MathSciNet  MATH  Google Scholar 

  32. WIJSHOFF H. The dynamics of the piezo inkjet printhead operation [J]. Physics Reports, 2010, 491(4/5): 77–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-ning Chen  (陈瀚宁).

Additional information

Foundation item: Projects(2014AA052101-3, 2014AA052102) supported by the National High Technology Research and Development Program of China; Projects(51205389, 61105067) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Mw., Sun, Ll., Hu, Ky. et al. Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction. J. Cent. South Univ. 22, 3925–3934 (2015). https://doi.org/10.1007/s11771-015-2937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2937-4

Keywords

Navigation