Log in

Mean field games with state constraints: from mild to pointwise solutions of the PDE system

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean Field Game system with state constraints. For this, we show a global semiconvavity property of the value function associated with optimal control problems with state constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Buera, F.J., Lasry, J.-M., Lions, P.-L., Moll, B.: Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A 372(2028), 20130397 (2014)

    Article  MathSciNet  Google Scholar 

  2. Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., Moll, B.: Heterogeneous agent models in continuous time, Preprint, (2014)

  3. Ambrosio, L., Gigli, N., Savare, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

  4. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  5. Benamou, J.D., Carlier, G.: Augmented Lagrangian methods for trasport optimization, mean field games and degenerate elliptic equations. J. Opt. Theor. Appl. 167(1), 1–26 (2015)

    Article  Google Scholar 

  6. Benamou, J.D., Carlier, G., Santambrogio, F.: Variational Mean Field Games. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles, vol. 1, pp. 141–171. Birkhäuser, Modeling and Simulation in Science, Engineering and Technology (2017)

  7. Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52(4), 411–452 (1999)

    Article  MathSciNet  Google Scholar 

  8. Cannarsa, P., Capuani, R.: Existence and uniqueness for Mean Field Games with state constraints. In: Cardaliaguet, P., Porretta, A., Salvarani, F. (eds.) PDE Models for Multi-Agent Phenomena, vol. 28. Springer, Cham (2018)

    Chapter  Google Scholar 

  9. Cannarsa, P., Capuani, R., Cardaliaguet, P.: \({{ C}}^{{ 1,1}}\)-smoothness of constrained solutions in the calculus of variations with application to mean field games. Math. Eng. 1(1), 174–203 (2018). https://doi.org/10.3934/Mine.2018.1.174

    Article  MATH  Google Scholar 

  10. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston Inc., Boston (2004)

    MATH  Google Scholar 

  11. Cannarsa, P., Soner, H.M.: On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equation. Indiana Univ. Math. JI 36, 501 (1987)

    Article  MathSciNet  Google Scholar 

  12. Capuzzo-Dolcetta, I., Lions, P.L.: Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318(2), 643–683 (1990)

    Article  MathSciNet  Google Scholar 

  13. Cardaliaguet, P., Marchi, C.: Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms. SIAM J. Control Optim. 45(3), 1017–1038 (2006)

    Article  MathSciNet  Google Scholar 

  14. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling. In: Analysis and geometry in control theory and its applications, Vol 11 of Springer INdAM Ser., pp. 111-158, Springer, Cham, (2015)

  15. Cardaliaguet, P., Mészáros, A.R., Santambrogio, F.: First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54(5), 2672–2709 (2016)

    Article  MathSciNet  Google Scholar 

  16. Carlini, E., Festa, A., Silva, F.J., Wolfram, M.-T.: A semi-lagrangian scheme for a modified version of the Hughes’ model for pedestrian flow. Dyn. Games Appl. 7(4), 683–705 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cavagnari, G., Marigonda, A., Piccoli, B.: Superposition Principle for Differential Inclusions. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing, LSSC 2017. Lecture Notes in Computer Science, vol. 10665, pp. 201–209. Springer, Cham (2018)

    Google Scholar 

  18. Cesari, L.: Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics, vol. 17. Springer, New York (1983)

    MATH  Google Scholar 

  19. Cristiani, E., Priuli, F.S., Tosin, A.: Modeling rationality to control self-organization of crowds: an environmental approach. SIAM J. Appl. Math. 75(2), 605–629 (2015)

    Article  MathSciNet  Google Scholar 

  20. Dugundji, J.: Topology. Allyn and Bacon, Inc., Boston (1966)

    MATH  Google Scholar 

  21. Guerand, J.: Flux-limited solutions and state constraints for quasi-convex Hamilton Jacobi equations in multidimensional domains. Nonlinear Anal. 162, 162–177 (2017)

    Article  MathSciNet  Google Scholar 

  22. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  23. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainly equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Ishii, H., Koike, S.: A new formulation of state constraint problems for first-order PDEs. SIAM J. Control Optim. 34(2), 554–571 (1996)

    Article  MathSciNet  Google Scholar 

  25. Imbert, C., Monneau, R.: Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales scientifiques de l?ENS, to appear, (2016)

  26. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  27. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(9), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  28. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  29. Soner, H.M.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  Google Scholar 

  30. Soner, H.M.: Optimal control with state-space constraint. II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cardaliaguet.

Additional information

Communicated by L.Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by the University of Rome Tor Vergata (Consolidate the Foundations 2015) and by the Istituto Nazionale di Alta Matematica “F. Severi” (GNAMPA 2016 Research Projects). The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The second author is grateful to the Università Italo Francese (Vinci Project 2015). The third author was partially supported by the ANR project ANR-16-CE40-0015-01 and by the AFOSR grant FA9550-18-1-0494.

Appendix: proof of Lemma 2.1

Appendix: proof of Lemma 2.1

The idea of the proof is based on [11, Theorem 4.5]. Let \(x\in \partial \Omega \) and let \(\nu (x)\) be the outward unit normal to \(\partial \Omega \) in x. Let \(\theta \in {\mathbb {R}}^n\) be such that \(\langle \theta ,\nu (x)\rangle \le 0\). Let us set

$$\begin{aligned} M(\theta ,x)=\min _{ p\in D^+u(x)}\langle p,\theta \rangle . \end{aligned}$$

It suffices to prove that

$$\begin{aligned} \limsup _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}} \frac{u(x+h\theta ')-u(x)}{h}\le M(\theta ,x)\le \liminf _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}} \frac{u(x+h\theta ')-u(x)}{h}. \end{aligned}$$
(5.1)

The first inequality in (5.1) is straightforward. Indeed, for any \(p\in D^+u(x)\),

$$\begin{aligned} \limsup _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}} \frac{u(x+h\theta ')-u(x) - \langle p,h\theta '\rangle }{h}\le 0. \end{aligned}$$

So,

$$\begin{aligned} \limsup _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}}\frac{u(x+h\theta )-u(x)}{h}\le \langle p,\theta \rangle , \ \ \ \forall \ p\in D^+u(x). \end{aligned}$$

In order to prove the last inequality in (5.1), pick sequences \(h_k\rightarrow 0\) and \(\theta _k\rightarrow \theta \) such that \(x+h_k\theta _k\in {\overline{\Omega }}\) and

$$\begin{aligned} \lim _{k\rightarrow \infty }\frac{u(x+h_k\theta _k)-u(x)}{h_k}=\liminf _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}}\frac{u(x+h\theta ')-u(x)}{h}. \end{aligned}$$
(5.2)

Let us define

$$\begin{aligned} {\mathcal {Q}}(x,\theta _k)=\Big \{x'\in \Omega : \langle x'-x,\theta _k\rangle >0, |\langle x'-x,\theta _k\rangle \theta _k-(x'-x)|\le |x'-x|^2\Big \}. \end{aligned}$$

We observe that the interior of \({\mathcal {Q}}(x,\theta _k)\) is nonempty. Since u is Lipschitz there exists a sequence \(x_k\) such that

  1. (i)

    \(x_k\in {\mathcal {Q}}(x,\theta _k)\), \(x_k\rightarrow x\) as \(k\rightarrow \infty \);

  2. (ii)

    u is differentiable at \(x_k\) and there exists \({\overline{p}}\in D^+u(x)\) such that \(D u(x_k)\rightarrow {\overline{p}}\) as \(k\rightarrow \infty \);

  3. (iii)

    \(|s_k-h_k|\le h_k^2\), where \(s_k=\langle x_k-x,\theta _k\rangle \).

By the Lipschitz continuity of u, we note that (iii) yields

$$\begin{aligned}&\Big | \frac{u(x+h_k\theta _k)-u(x)}{h_k}-\frac{u(x+s_k\theta _k)-u(x)}{s_k}\Big |\le \frac{|u(x+h_k\theta _k)-u(x+s_k\theta _k)|}{h_k}\\&\quad +\left| \frac{1}{h_k}-\frac{1}{s_k}\right| \big [|u(x+s_k\theta _k)-u(x)|\big ]\le 2\mathrm{Lip}(u) h_k. \end{aligned}$$

So, by (5.2) we have that

$$\begin{aligned} \lim _{k\rightarrow \infty } \frac{u(x+s_k\theta _k)-u(x)}{s_k}=\liminf _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}}\frac{u(x+h\theta ')-u(x)}{h}. \end{aligned}$$
(5.3)

Moreover,

$$\begin{aligned}&u(x+s_k\theta _k)-u(x)=[u(x+s_k\theta _k)-u(x_k)]+ [u(x_k)-u(x)-\langle D u(x_k),x_k-x\rangle ]\\&\quad +\langle D u(x_k),x_k-x-s_k\theta _k\rangle + \langle s_k D u(x_k),\theta _k\rangle . \end{aligned}$$

Since u is locally Lipschitz and \(x_k\in {\mathcal {Q}}(x,\theta _k)\), one has that

$$\begin{aligned}&\big |u(x+s_k\theta _k)-u(x_k)\big |+ \big |\langle D u(x_k),x_k-x-s_k\theta _k\rangle \big |\le 2\mathrm{Lip}(u)\big |x_k-x-s_k\theta _k\big |\\&\quad \le 2\mathrm{Lip}(u) |x_k-x|^2. \end{aligned}$$

Since u is semiconcave we deduce that

$$\begin{aligned} u(x_k)-u(x)-\langle D u(x_k),x_k-x\rangle \ge -C|x_k-x|\omega (|x_k-x|), \end{aligned}$$

for some constant \(C>0\). Therefore

$$\begin{aligned} \frac{u(x+s_k\theta _k)-u(x)}{s_k}\ge \langle D u(x_k),\theta _k \rangle - \frac{2\mathrm{Lip}(u)|x_k-x|^2+C|x_k-x|\omega (|x_k-x|)}{s_k}. \end{aligned}$$

By the definition of \({\mathcal {Q}}(x,\theta _k)\) one has that \(s_k|\theta _k|\ge |x_k-x|-|x_k-x|^2\), so that, as \(x_k\rightarrow x\), \(|x_k-x|\le 2s_k\) for k large enough. Recalling (ii), (5.3), and the fact that \(\theta _k\rightarrow \theta \), we conclude that

$$\begin{aligned} \liminf _{\begin{array}{c} h\rightarrow 0^+\\ \theta '\rightarrow \theta \\ x+h\theta '\in {\overline{\Omega }} \end{array}}\frac{u(x+h\theta ')-u(x)}{h}\ge \langle {\overline{p}}, \theta \rangle \ge M(\theta ,x). \end{aligned}$$
(5.4)

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannarsa, P., Capuani, R. & Cardaliaguet, P. Mean field games with state constraints: from mild to pointwise solutions of the PDE system. Calc. Var. 60, 108 (2021). https://doi.org/10.1007/s00526-021-01936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01936-4

Mathematics Subject Classification

Navigation