Log in

Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we establish the functional large deviation principle (LDP) for the Kac–Stroock approximations of a wild class of Gaussian processes constructed by telegraph types of integrals with \(L^2\)-integrands under mild conditions and find the explicit form for their rate functions. Our investigation includes a broad range of kernels, such as those related to Brownian motions, fractional Brownian motions with whole Hurst parameters, and Ornstein–Uhlenbeck processes. Furthermore, we consider a class of non-Markovian stochastic differential equations driven by the Kac–Stroock approximation and establish their Freidlin–Wentzell type LDP. The rate function clearly indicates an interesting phase transition phenomenon as the approximating rate moves from one region to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bardina, X., Binotto, G., Rovira, C.: The complex Brownian motion as a strong limit of processes constructed from a Poisson process. J. Math. Anal. Appl. 444(1), 700–720 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bardina, X., Jolis, M.: Weak approximation of the Brownian sheet from a Poisson process in the plane. Bernoulli 6(4), 653–665 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bardina, X., Jolis, M., Quer-Sardanyons, L.: Weak convergence for the stochastic heat equation driven by Gaussian white noise. Electron. J. Probab. 15(39), 1267–1295 (2010)

    MathSciNet  Google Scholar 

  4. Bardina, X., Márquez, J.P., Quer-Sardanyons, L.: Weak approximation of the complex Brownian sheet from a Lévy sheet and applications to SPDEs. Stoch. Process. Appl. 130(9), 5735–5767 (2020)

    Article  Google Scholar 

  5. Bardina, X., Nourdin, I., Rovira, C., Tindel, S.: Weak approximation of a fractional SDE. Stoch. Process. Appl. 120(1), 39–65 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bogachev, L., Ratanov, N.: Occupation time distributions for the telegraph process. Stoch. Process. Appl. 121(8), 1816–1844 (2011)

    Article  MathSciNet  Google Scholar 

  7. Borovkov, A.A., Mogulskii, A.A.: Large deviation principles for trajectories of compound renewal processes. I. Theory Probab. Appl. 60(2), 207–224 (2016)

    Article  MathSciNet  Google Scholar 

  8. Borovkov, A.A., Mogulskii, A.A.: Large deviation principles for trajectories of compound renewal processes. II. Theory Probab. Appl. 60(3), 349–366 (2016)

    Article  MathSciNet  Google Scholar 

  9. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20(1), 39–61 (2000)

    MathSciNet  Google Scholar 

  10. Budhiraja, A., Dupuis, P., Maroulas, V.: Variational representation for continuous time processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(3), 725–747 (2011)

    Article  MathSciNet  Google Scholar 

  11. Budhiraja, A., Dupuis, P., Ganguly, A.: Moderate deviation principles for stochastic differential equations with jumps. Ann. Probab. 44(3), 1723–1775 (2016)

    Article  MathSciNet  Google Scholar 

  12. Budhiraja, A., Dupuis, P., Ganguly, A.: Large deviations for small noise diffusions in a fast Markovian environment. Electron. J. Probab. 23(112), 1–33 (2018)

    MathSciNet  Google Scholar 

  13. Cinque, F., Orsingher, E.: On the exact distributions of the maximum of the asymmetric telegraph process. Stoch. Process. Appl. 142, 601–633 (2021)

    Article  MathSciNet  Google Scholar 

  14. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potent. Anal. 10(2), 177–214 (1999)

    Article  MathSciNet  Google Scholar 

  15. Delgado, R., Jolis, M.: Weak approximation for a class of Gaussian processes. J. Appl. Probab. 37(2), 400–407 (2000)

    Article  MathSciNet  Google Scholar 

  16. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (1998)

    Book  Google Scholar 

  17. Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press, London (1989)

    Google Scholar 

  18. Deya, A., Jolis, M., Quer-Sardanyons, L.: The Stratonovich heat equation: a continuity result and weak approximations. Electron. J. Probab. 18(3), 1267–1295 (2013)

    MathSciNet  Google Scholar 

  19. Einstein, A.: On the movement of small particles suspended in stationary liquids required by molecular-kinetic theory of heat. Ann. Phys. 17, 549560 (1905)

    Google Scholar 

  20. Fontbona, J., Guérin, H., Florent, M.: Long time behavior of telegraph processes under convex potentials. Stoch. Process. Appl. 126(10), 3077–3101 (2016)

    Article  MathSciNet  Google Scholar 

  21. Foong, S.K., Kanno, S.: Properties of the telegrapher’s random process with or without a trap. Stoch. Process. Appl. 53(1), 147–173 (1994)

    Article  MathSciNet  Google Scholar 

  22. Forde, M., Zhang, H.: Asymptotics for rough stochastic volatility models. SIAM J. Financ. Math. 8(1), 114–145 (2017)

    Article  MathSciNet  Google Scholar 

  23. Friedlin, M.I., Wentzel, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (2012)

    Book  Google Scholar 

  24. Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Friz, P.K., Gerhold, S., Pinter, A.: Option pricing in the moderate deviations regime. Math. Finance. 28(3), 962–988 (2018)

    Article  MathSciNet  Google Scholar 

  26. Guillin, A.: Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging. Stoch. Process. Appl. 92(2), 287–313 (2001)

    Article  MathSciNet  Google Scholar 

  27. Guillin, A.: Averaging principle of SDE with small diffusion: moderate deviations. Ann. Probab. 31(1), 413–443 (2003)

    Article  MathSciNet  Google Scholar 

  28. Gulisashvili, A.: Large deviation principle for Volterra type fractional stochastic volatility models. SIAM J. Financ. Math. 9(3), 1102–1136 (2018)

    Article  MathSciNet  Google Scholar 

  29. He, Q., Yin, G., Zhang, Q.: Large deviations for two-time-scale systems driven by nonhomogeneous Markov chains and associated optimal control problems. SIAM J. Control Optim. 49(4), 1737–1765 (2011)

    Article  MathSciNet  Google Scholar 

  30. He, Q., Yin, G.: Moderate deviations for time-varying dynamic systems driven by non-homogeneous Markov chains with two-time scales. Stochastics 86(3), 527–550 (2014)

    Article  MathSciNet  Google Scholar 

  31. Jacquiera, A., Panniera, A.: Large and moderate deviations for stochastic Volterra systems. Stoch. Process. Appl. 149, 142–187 (2022)

    Article  MathSciNet  Google Scholar 

  32. Jiang, H., Yang, Q.S.: Asymptotic behavior of the weak approximation to a class of Gaussian processes. J. Appl. Probab. 58(3), 693–707 (2021)

    Article  MathSciNet  Google Scholar 

  33. Kac, A.: Stochastic model related to the telegrapher’s equation. Rocky Mount. J. Math. 4, 497–509 (1974). (Reprinted from: M. Kac, Some stochastic problems in physics and mathematics, Colloquium lectures in the pure and applied sciences, No. 2, hectographed, Field Research Laboratory, Socony Mobil Oil Company, Dallas, TX, 1956, pp. 102–122)

    Article  MathSciNet  Google Scholar 

  34. Kolesnik, A.D., Ratanov, N.: Telegraph Processes and Option Pricing. Springer, Berlin, Heidelberg (2013)

    Book  Google Scholar 

  35. Li, Y.Q., Dai, H.S.: Approximations of fractional Brownian motion. Bernoulli 17(4), 1195–1216 (2011)

    Article  MathSciNet  Google Scholar 

  36. Liu, W., Song, Y.L., Zhai, J.L., Zhang, T.S.: Large and moderate deviation principles for McKean–Vlasov SDEs with jumps. Potent. Anal. (2022). https://doi.org/10.1007/s11118-022-10005-0

    Article  Google Scholar 

  37. Macci, C., Martinucci, B., Pirozzi, E.: Asymptotic results for the absorption time of telegraph processes with elastic boundary at the origin. Methodol. Comput. Appl. Probab. 23(3), 1077–1096 (2021)

    Article  MathSciNet  Google Scholar 

  38. Orsingher, E.: Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws. Stoch. Process. Appl. 34(1), 49–66 (1990)

    Article  MathSciNet  Google Scholar 

  39. Pinsky, M.A.: Lectures on Random Evolution. World Scientific, Singapore (1991)

    Book  Google Scholar 

  40. Protter, P.: Stochastic Integration and Differential Equation. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  41. Puhalskii, A.: On functional principle of large deviations. In: Sazonov, V.V., Shervashidze, T. (eds.) Vol. 1 Proceedings of the Bakuriani Colloquium in Honour of Yu. V. Prohorov, Bakuriani, Georgia, USSR, 24 February–4 March, 1990, pp. 198-218. De Gruyter, Berlin, Boston (1991). https://doi.org/10.1515/9783112313626-019

  42. Ratanov, N.: Telegraph evolutions in inhomogeneous media. Markov Process. Rel. Fields 5(1), 53–68 (1999)

    MathSciNet  Google Scholar 

  43. Renardy, M., Rogers, R.C.: An introduction to partial differential equations. In: Number 13 in Texts in Applied Mathematics, 2nd edn. Springer, New York (2004)

  44. Smoluchowski, M.: Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Phys. 21, 756780 (1906)

    Google Scholar 

  45. Stroock, D.W.: Lectures on Topics in Stochastic Differential Equations. Tata Institute of Fundamental Research & Springer, Berlin (1982)

    Google Scholar 

  46. Wang, Z., Yan, L.T., Yu, X.Y.: Weak approximation of the fractional Brownian sheet from random walks. Electron. Commun. Probab. 18(90), 1–13 (2013)

    MathSciNet  Google Scholar 

  47. Winter, W., Xu, L., Zhai, J., Zhang, T.: The dynamics of the stochastic shadow Gierer–Meinhardt system. J. Differ. Equ. 260(1), 84–114 (2016)

    Article  MathSciNet  Google Scholar 

  48. Zacks, S.: Generalized integrated telegraph processes and the distribution of related stop** times. J. Appl. Probab. 41(2), 497–507 (2004)

    Article  MathSciNet  Google Scholar 

  49. Zhang, X.C.: Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differ. Equ. 244(9), 2226–2250 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Hui JIANG is supported by the Natural Science Foundation of Jiangsu Province of China (20231435), the Fundamental Research Funds for the Central Universities (No. NS2022069) and National Natural Science Foundation of China (Grant Nos. 11771209, 11971227). Lihu Xu is supported by National Natural Science Foundation of China No. 12071499, Macao S.A.R. Grant FDCT 0090/2019/A2 and University of Macau Grant MYRG2020-00039-FST. Qingshan YANG is supported by National Natural Science Foundation of China (Grant Nos. 11401090, 11971097, 11971098).

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Yang Qingshan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we first give an alternative proof of Proposition 3 explicitly. Then, some estimations of tail probability for small noise diffusions and deviation inequalities for Poisson random integral will be given.

Proof of Proposition 3

By Theorem 4.2 in [29], which addresses inhomogeneous Markov chains, our case being homogeneous simplifies the scenario. Consequently, the so-called H-functional reduces to a single variable without the time t. Thus, it is enough to prove that for any \(\beta \in {\mathbb {R}}\),

$$\begin{aligned} H(\beta )=\sqrt{1+\beta ^{2}}-1. \end{aligned}$$

We note that \(\xi (t)=(-1)^{N(t)}\) is a  \(\{-1,1\}\)-valued reversible Markov process with stationary distribution \(\mu \) satisfying

$$\begin{aligned} \mu (1)=\mu (-1)=\frac{1}{2}. \end{aligned}$$

and Q-matrix

$$\begin{aligned} Q=\left( \begin{array}{ll}-1\\ ~~ 1\\ \end{array} \begin{array}{ll}~~ 1\\ -1\\ \end{array}\right) . \end{aligned}$$

By Theorem 4.2 of Friedlin and Wentzel [23] in p. 218 with \(b(x,i)=i\), the desired result is obtained after simple calculation. \(\square \)

1.1 Estimations of Tail Probability for Small Noise Diffusions

Recall that \(N^{\alpha }\) is a Poisson random measure with the intensity measure \(\alpha dt\) on  \(({\mathbb {R}}_{+}, {\mathcal {B}}({\mathbb {R}}_{+}))\) and \(\tilde{N}^{\alpha }(ds)={N}^{\alpha }(ds)-\alpha ds\) is the compensated Poisson random measure. Now, as the main result of this subsection, the following proposition gives estimation of tail probability for small noise diffusions, which plays a crucial role in the proof of Theorem 2.

Proposition 6

Assume that \(U^{\epsilon }=\{U^{\epsilon }(t), t\in [0,1]\}\) is a continuous stochastic process valued in \(\mathbb {R}\). Define  \(\hat{Y}^{\epsilon }=\{\hat{Y}^{\epsilon }(t), t\in [0,1]\}\) and  \(\check{Y}^{\epsilon }=\{\check{Y}^{\epsilon }(t), t\in [0,1]\}\) as follows

$$\begin{aligned} \begin{aligned}&\hat{Y}^{\epsilon }(t)=\hat{y}^{\epsilon }_{0}+\int ^{t}_{0}\hat{h}^{\epsilon }(s)ds +\lambda (\epsilon )\epsilon \int ^{t}_{0}\hat{\gamma }^{\epsilon }(s)\tilde{N}^{\epsilon ^{-2}}(ds), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\check{Y}^{\epsilon }(t)=\check{y}^{\epsilon }_{0}+\int ^{t}_{0}\check{h}^{\epsilon }(s)ds +\lambda (\epsilon )\epsilon \int ^{t}_{0}\check{\gamma }^{\epsilon }(s)\tilde{N}^{\epsilon ^{-2}}(ds). \end{aligned} \end{aligned}$$

For the stop** time \(\tau \in [0,1]\) and some positive constants \(\rho \), B and M, suppose the following assumptions hold.

  1. (1)

    For any \(t\in [0,\tau ]\),

    $$\begin{aligned}&|\hat{h}^{\epsilon }(t)|\vee |\check{h}^{\epsilon }(t)|\le B\left( \rho ^{2}+|U^{\epsilon }(t-)|^{2}\right) ^{\frac{1}{2}},\\&|\hat{\gamma }^{\epsilon }(t)|\vee |\check{\gamma }^{\epsilon }(t)|\le M\left( \rho ^{2}+|U^{\epsilon }(t-)|^{2}\right) ^{\frac{1}{2}}. \end{aligned}$$
  2. (2)

    For any \(t\in [0,\tau )\), \(\check{Y}^{\epsilon }(t)\le U^{\epsilon }(t)\le \hat{Y}^{\epsilon }(t)\). Take \(\epsilon \) sufficient small such that \(1-\epsilon \lambda (\epsilon )M>\frac{1}{\sqrt{2}}\). Then, for any \(\delta >0\),

    $$\begin{aligned} \begin{aligned}&\lambda ^2(\epsilon )\log {\mathbb {P}}\Bigg (\sup _{t\in [0,\tau ]}|U^{\epsilon }(t)|>\delta \Bigg )\\&\quad \le 2\sqrt{2}B+4M^2\epsilon ^{2}(2+3\lambda ^{2}(\epsilon ))e^{4M\epsilon /{\lambda (\epsilon )}} +\log \Big (\frac{\rho ^{2}+|\hat{y}^{\epsilon }_{0}|^{2}+|\check{y}^{\epsilon }_{0}|^{2}}{\rho ^{2}+\delta ^{2}}\Big ). \end{aligned} \end{aligned}$$

To prove Proposition 6, we need the following lemma and its proof will be postponed to the end of this subsection.

Lemma 6

Define the \(\mathbb {R}^{2}\)-valued processes  \(Y^{\epsilon }=\{Y^{\epsilon }(t), t\in [0,1]\}\) as follows:

$$\begin{aligned} \begin{aligned} Y^{\epsilon }(t)&=y^{\epsilon }_{0}+\int ^{t}_{0}h^{\epsilon }(s)ds +\lambda (\epsilon )\epsilon \int ^{t}_{0}\gamma ^{\epsilon }(s)\tilde{N}^{\epsilon ^{-2}}(ds). \end{aligned} \end{aligned}$$
(A1)

For the stop** time  \(\tau \in [0,1]\), suppose that there exist some positive constants B\(\rho \) and M such that for any \(t\in [0,\tau ]\),

$$\begin{aligned} \begin{aligned}&|h^{\epsilon }(t)|\le B\left( \rho ^{2}+|Y^{\epsilon }(t-)|^{2}\right) ^{\frac{1}{2}},\\&|\gamma ^{\epsilon }(t)|\le M\left( \rho ^{2}+|Y^{\epsilon }(t-)|^{2}\right) ^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(A2)

Take \(\epsilon \) sufficient small such that \(1-\epsilon \lambda (\epsilon )M>\frac{1}{\sqrt{2}}\). Then, for any \(\delta >0\)

$$\begin{aligned} \begin{aligned}&\lambda ^{2}(\epsilon )\log {\mathbb {P}}\Bigg (\sup _{t\in [0,\tau ]}|Y^{\epsilon }(t)|>\delta \Bigg )\\&\quad \le 2B+2M^2\epsilon ^{2}(2+3\lambda ^{2}(\epsilon ))\cdot e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}}+\log \Big (\frac{\rho ^{2}+\Vert y^{\epsilon }_{0}\Vert ^{2}}{\rho ^{2}+\delta ^{2}}\Big ). \end{aligned} \end{aligned}$$

Proof of Proposition 6

For any \(t\in [0,\tau ]\),

$$\begin{aligned} \begin{aligned}&|\hat{h}^{\epsilon }(t)|\vee |\check{h}^{\epsilon }(t)|\le B\Big (\rho ^{2}+|\hat{Y}^{\epsilon }(t-)|^{2}+|\check{Y}^{\epsilon }(t-)|^{2}\Big )^{\frac{1}{2}},\\&|\hat{\gamma }^{\epsilon }(t)|\vee |\check{\gamma }^{\epsilon }(t)| \le M\Big (\rho ^{2}+|\hat{Y}^{\epsilon }(t-)|^{2}+|\check{Y}^{\epsilon }(t-)|^{2}\Big )^{\frac{1}{2}}. \end{aligned} \end{aligned}$$

Define  \(Y^{\epsilon }(t)=\big (\hat{Y}^{\epsilon }(t), \check{Y}^{\epsilon }(t)\big )\). Then,  \(Y^{\epsilon }\) satisfies the conditions of Lemma 6 with \(y^{\epsilon }_{0}=\big (\hat{y}^{\epsilon }_{0}, \check{y}^{\epsilon }_{0}\big )\). Consequently, for the stop** time \(\tau \in [0,1]\) and any \(\delta >0\),

$$\begin{aligned}{} & {} \lambda ^{2}(\epsilon )\log {\mathbb {P}}\Bigg (\sup _{t\in [0,\tau ]}\Vert Y^{\epsilon }(t)\Vert >\delta \Bigg )\\{} & {} \quad \le 2\sqrt{2}B+4M^2\epsilon ^{2}(2+3\lambda ^{2}(\epsilon ))e^{4M\epsilon /{\lambda (\epsilon )}} +\log \Big (\frac{\rho ^{2}+\Vert y^{\epsilon }_{0}\Vert ^{2}}{\rho ^{2}+\delta ^{2}}\Big ). \end{aligned}$$

Together with the fact that  \(\sup _{t\in [0,\tau ]}|U^{\epsilon }(t)|^{2}\le \sup _{t\in [0,\tau ]}(|\hat{Y}^{\epsilon }(t)|^{2}+|\check{Y}^{\epsilon }(t)|^{2})=\sup _{t\in [0,\tau ]}|Y^{\epsilon }(t)|^{2}\), we can complete the proof of this proposition. \(\square \)

To end this subsection, we will give the proof to Lemma 6. Firstly, we give the following auxiliary result.

Lemma 7

Assume that \(\rho \ge 0\), \(0<\beta <1\), and \(a,b\in \mathbb {R}^d\) satisfy

$$\begin{aligned} |b|^{2}\le \beta (\rho ^{2}+|a|^{2}). \end{aligned}$$

Then, we have

$$\begin{aligned} \rho ^{2}+|a|^{2}\le \frac{\rho ^{2}+|a+b|^{2}}{(1-\sqrt{\beta })^{2}}. \end{aligned}$$

Proof

For any \(\epsilon >0\), it holds

$$\begin{aligned} |a|^{2}&\le |a+b|^{2}+|b|^{2}+2|a+b||b|\\&\le |a+b|^{2}+|b|^{2}+\epsilon |a+b|^{2}+\frac{|b|^{2}}{\epsilon }\\&\le (1+\epsilon )|a+b|^{2}+\Big (1+\frac{1}{\epsilon }\Big )|b|^{2}\\&\le (1+\epsilon )|a+b|^{2}+\beta \Big (1+\frac{1}{\epsilon }\Big )(\rho ^{2}+|a|^{2}), \end{aligned}$$

which implies immediately

$$\begin{aligned} \rho ^{2}+|a|^{2}\le (1+\epsilon )(\rho ^{2}+|a+b|^{2})+\beta \Big (1+\frac{1}{\epsilon }\Big )(\rho ^{2}+|a|^{2}). \end{aligned}$$

Therefore, provided that \(\epsilon (1-\beta )-\beta >0\), we obtain

$$\begin{aligned} \rho ^{2}+|a|^{2}\le \frac{\epsilon (1+\epsilon )}{\epsilon (1-\beta )-\beta }\Big (\rho ^{2}+|a+b|^{2}\Big ). \end{aligned}$$

Taking \(\epsilon =\frac{\beta +\sqrt{\beta }}{1-\beta }\), we have

$$\begin{aligned} \rho ^{2}+|a|^{2} \le \frac{(1+\sqrt{\beta })^{2}}{(1-\beta )^{2}}\left( \rho ^{2}+|a+b|^{2}\right) =\frac{\rho ^{2}+|a+b|^{2}}{(1-\sqrt{\beta })^{2}}. \end{aligned}$$

\(\square \)

Proof of Lemma 6

Define for \(u\in \mathbb {R}^d\)

$$\begin{aligned} \Phi (u)= & {} \log (\rho ^{2}+|u|^{2}),\\ \psi (u)= & {} \exp \Big \{\frac{\Phi (u)}{\lambda ^{2}(\epsilon )}\Big \}=(\rho ^{2}+|u|^{2})^{\frac{1}{\lambda ^2(\epsilon )}}. \end{aligned}$$

By Itô’s formula, we can write

$$\begin{aligned} \psi (Y^{\epsilon }(t))= & {} \psi (y^{\epsilon }_{0})+\int _0^t\mathcal {B}^{\epsilon }(s)\tilde{N}^{\epsilon ^{-2}}(ds)\nonumber \\{} & {} +\,\int _0^t\langle \nabla \psi (Y^{\epsilon }(s-)),h^{\epsilon }(s)\rangle ds +\int _0^t\mathcal {A}^{\epsilon }(s)ds, \end{aligned}$$
(A3)

where

$$\begin{aligned} \mathcal {A}^{\epsilon }(s)= & {} \exp \Big \{\frac{\Phi (Y^{\epsilon }(s-)+\lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s))}{\lambda ^2(\epsilon )}\Big \}-\exp \Big \{\frac{\Phi (Y^{\epsilon }(s-)}{\lambda ^2(\epsilon )}\Big \}\nonumber \\{} & {} -\frac{\epsilon \langle \nabla \Phi (Y^{\epsilon }(s-),\gamma ^{\epsilon }(s)\rangle }{\lambda (\epsilon )} \exp \Big \{\frac{\Phi (Y^{\epsilon }(s-)}{\lambda ^2(\epsilon )}\Big \} \end{aligned}$$
(A4)

and

$$\begin{aligned} \mathcal {B}^{\epsilon }(s)=\exp \Big \{\frac{\Phi (Y^{\epsilon }(s-)+\lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s))}{\lambda ^2(\epsilon )}\Big \} -\exp \Big \{\frac{\Phi (Y^{\epsilon }(s-)}{\lambda ^2(\epsilon )}\Big \}. \end{aligned}$$

Firstly, Taylor formula gives

$$\begin{aligned} \mathcal {A}^{\epsilon }(s)= & {} \frac{\epsilon ^{2}}{2\lambda ^2(\epsilon )}\psi (\tilde{Y}^{\epsilon }(s))\langle \nabla \Phi (\tilde{Y}^{\epsilon }(s)\otimes \nabla \Phi (\tilde{Y}^{\epsilon }(s), \gamma ^{\epsilon }(s)\otimes \gamma ^{\epsilon }(s)\rangle \nonumber \\{} & {} -\frac{\epsilon ^{2}}{2}\psi (\tilde{Y}^{\epsilon }(s))\langle \nabla \otimes \nabla \Phi \big (\tilde{Y}^{\epsilon }(s)\big ), \gamma ^{\epsilon }(s)\otimes \gamma ^{\epsilon }(s)\rangle , \end{aligned}$$
(A5)

where \(\tilde{Y}^{\epsilon }(s)=Y^{\epsilon }(s-)+\theta \lambda (\epsilon )\epsilon \gamma (s)\), \(\theta \in [0,1]\). Now, we will give the estimates of above terms, respectively.

Let \(a=Y^{\epsilon }(s-)\),  \(b=\theta \lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s)\). For \(s\in [0,\tau ]\), we have by (A2)

$$\begin{aligned} |b|^{2}\le \lambda ^2(\epsilon )\epsilon ^{2}\Vert \gamma ^{\epsilon }(s)\Vert ^{2}\le M^2\epsilon ^{2}\lambda ^2(\epsilon )(\rho ^{2}+|a|^{2}). \end{aligned}$$

Then, from Lemma 7, it follows

$$\begin{aligned} |\gamma ^{\epsilon }(s)|^{2}\le & {} M^2\left( \rho ^{2}+|Y^{\epsilon }(s-)|^{2}\right) \nonumber \\\le & {} \frac{M^2}{\big (1- \epsilon \lambda (\epsilon )M\big )^{2}} \cdot \left( \rho ^{2}+|\tilde{Y}^{\epsilon }(s)|^{2}\right) \nonumber \\\le & {} 2M^{2}\left( \rho ^{2}+|\tilde{Y}^{\epsilon }(s)|^{2}\right) , \end{aligned}$$
(A6)

where the last inequality is obtained by \(1-\epsilon \lambda (\epsilon )M>\frac{1}{\sqrt{2}}\) and thus for any \(s\le \tau \),

$$\begin{aligned}{} & {} \Big |\langle \nabla \Phi (\tilde{Y}^{\epsilon }(s)\otimes \nabla \Phi (\tilde{Y}^{\epsilon }(s), \gamma ^{\epsilon }(s)\otimes \gamma ^{\epsilon }(s)\rangle \Big |\nonumber \\{} & {} \quad \le \frac{4|\gamma ^{\epsilon }(s)|^{2}\big |\tilde{Y}^{\epsilon }(s)\big |^{2}}{\Big (\rho ^{2}+\big |\tilde{Y}^{\epsilon }(s)\big |^{2}\Big )^{2}}\nonumber \\{} & {} \quad \le \frac{8M^2\big |\tilde{Y}^{\epsilon }(s)\big |^{2}}{\rho ^{2}+\big |\tilde{Y}^{\epsilon }(s)\big |^{2}}\le 8M^2. \end{aligned}$$
(A7)

Moreover, there exists \(\theta '\in [0,1]\) such that

$$\begin{aligned} \psi (\tilde{Y}^{\epsilon }(s)) =\psi (Y^{\epsilon }(s)) \exp \left( \frac{2\epsilon \theta }{\lambda (\epsilon )} \cdot \frac{<Y^{\epsilon }(s-)+\theta '\theta \lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s), \gamma ^{\epsilon }(s)>}{\rho ^{2}+|Y^{\epsilon }(s-)+\theta '\theta \lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s)|^{2}}\right) . \end{aligned}$$

Following the same line as in the proof of (A6), we have for \(s\in [0,\tau ]\)

$$\begin{aligned} |\gamma ^{\epsilon }(s)|^{2}\le 2M^2\left( \rho ^{2}+|Y^{\epsilon }(s-)+\theta '\theta \lambda (\epsilon )\epsilon \gamma ^{\epsilon }(s)|^{2}\right) . \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \psi (\tilde{Y}^{\epsilon }(s))\le \psi (Y^{\epsilon }(s))e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}},\quad s\le \tau . \end{aligned}$$
(A8)

Now, the fact \(\nabla \otimes \nabla \Phi _{i,j}(u)=\frac{2\delta _{i,j}}{\rho ^{2}+\Vert u\Vert ^{2}}-\frac{4u_{i}u_{j}}{(\rho ^{2}+\Vert u\Vert ^{2})^{2}}\) gives the following operator norm

$$\begin{aligned} \Big \Vert \nabla \otimes \nabla \Phi \big (\tilde{Y}^{\epsilon }(s)\big )\Big \Vert \le \frac{6}{\rho ^{2}+\big |\tilde{Y}^{\epsilon }(s)\big |^{2}}, \end{aligned}$$

which together with (A6) implies

$$\begin{aligned} \Big |\langle \nabla \otimes \nabla \Phi \big (\tilde{Y}^{\epsilon }(s)\big ), \gamma ^{\epsilon }(s)\otimes \gamma ^{\epsilon }(s)\rangle \Big | \le 12M^2. \end{aligned}$$
(A9)

Combing  (A7)–(A9), we have

$$\begin{aligned} \big |\mathcal {A}^{\epsilon }(s)\big |\le \left( 4M^2\epsilon ^{2}\lambda ^{-2}(\epsilon )+6M^2\epsilon ^{2}\right) e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}}\psi (Y^{\epsilon }(s)). \end{aligned}$$
(A10)

Secondly, it holds for any \(s\le \tau \),

$$\begin{aligned} \big |\langle \nabla \psi (Y^{\epsilon }(s-)),h^{\epsilon }(s)\rangle \big |\le \frac{2B}{\lambda ^2(\epsilon )}\psi (Y^{\epsilon }(s-)). \end{aligned}$$

Together with (A3) and (A10), we can get for any \(t\le \tau \),

$$\begin{aligned} \psi (Y^{\epsilon }(t))&\le \psi (y^{\epsilon }_{0})+\int _0^t\mathcal {B}^{\epsilon }(s)\tilde{N}^{\epsilon ^{-2}}(ds)\\&\quad +\left( \Big (4M^2\epsilon ^{2}\lambda ^{-2}(\epsilon )+6M^2\epsilon ^{2}\Big )e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}} +2B\lambda ^{-2}(\epsilon )\right) \int ^{t}_{0}\psi (Y^{\epsilon }(s))ds. \end{aligned}$$

Finally, letting \(\tau _{1}:=\inf \left\{ t\ge 0; |Y^{\epsilon }(t)|\ge \delta \right\} \), we have

$$\begin{aligned}&\mathbb {E}\psi (Y^{\epsilon }(\tau \wedge \tau _{1}\wedge t))\\&\quad \le \psi (y^{\epsilon }_0)+\left( \Big (4M^2\epsilon ^{2}\lambda ^{-2}(\epsilon )+6M^2\epsilon ^{2}\Big )e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}} +2B\lambda ^{-2}(\epsilon )\right) \\&\qquad \int ^{t}_{0}\psi (Y^{\epsilon }(\tau \wedge \tau _{1}\wedge s))ds, \end{aligned}$$

which implies by Gronwall inequality

$$\begin{aligned} \mathbb {E}\psi (Y^{\epsilon }(\tau \wedge \tau _{1})) \le \psi (y^{\epsilon }_0)\exp \left\{ \Big (4M^2\epsilon ^{2}\lambda ^{-2}(\epsilon )+6M^2\epsilon ^{2}\Big )e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}} +2B\lambda ^{-2}(\epsilon )\right\} . \end{aligned}$$

Therefore,

$$\begin{aligned}&{\mathbb {P}}\Bigg (\sup _{t\in [0,\tau ]}|Y^{\epsilon }(t)|>\delta \Bigg )\\&\quad \le {\mathbb {P}}\Big (\psi (Y^{\epsilon }(\tau \wedge \tau _{1}))\ge \psi (\delta )\Big )\\&\quad \le \frac{\mathbb {E}\psi (Y^{\epsilon }(\tau \wedge \tau _{1}))}{\psi (\delta )}\\&\quad =\Big (\frac{\rho ^{2}+|y^{\epsilon }_0|^{2}}{\rho ^{2}+\delta ^{2}}\Big )^{\frac{1}{\lambda ^2(\epsilon )}} \exp \left\{ \Big (4M^2\epsilon ^{2}\lambda ^{-2}(\epsilon )+6M^2\epsilon ^{2}\Big )e^{2\sqrt{2}M\epsilon /{\lambda (\epsilon )}} +2B\lambda ^{-2}(\epsilon )\right\} , \end{aligned}$$

which completes the proof of this lemma. \(\square \)

1.2 Deviation Inequalities for Poisson Random Integrals

Proposition 7

For the stop** time \(\tau \), assume that there exist some constants \(\rho \), \(\iota _1\) and \(\iota _2\) such that

$$\begin{aligned} \iota _1\le \tau \le \iota _2,\quad \sup _{s\in [\iota _1,\tau ]}|\gamma (s)|\le \rho . \end{aligned}$$

For any \(a>0\) and \(\eta >0\), we have

$$\begin{aligned}{} & {} P\Bigg (\sup _{t\in [\iota _1,\tau ]}\lambda (\epsilon )\epsilon \int ^{t}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)>a\Bigg )\nonumber \\{} & {} \quad \le \exp \left\{ -\lambda ^{-2}(\epsilon )\Big (\eta a-\frac{1}{2}\eta ^2\rho ^2(\iota _2-\iota _1)e^{\epsilon \lambda ^{-1}(\epsilon )\eta \rho }\Big )\right\} . \end{aligned}$$
(A11)

Proof

Define the stop** time

$$\begin{aligned} \hat{\tau }=\inf \Big \{t\ge \iota _1; \lambda (\epsilon )\epsilon \int ^{t}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)\ge a\Big \}. \end{aligned}$$

It holds that

$$\begin{aligned}&\Big \{\sup _{t\in [\iota _1,\tau ]}\lambda (\epsilon )\epsilon \int ^{t}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)>a\Big \} \subset \Big \{\lambda (\epsilon )\epsilon \int ^{\tau \wedge \hat{\tau }}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)\ge a\Big \}. \end{aligned}$$

For \(\eta >0\), Chebyshev inequality gives that

$$\begin{aligned}&{\mathbb {P}}\Big (\lambda (\epsilon )\epsilon \int ^{\tau \wedge \hat{\tau }}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)\ge a\Big )\\&\quad \le \exp \Big \{-\lambda ^{-2}(\epsilon )\eta a\Big \} {\mathbb {E}}\exp \Big \{\frac{\epsilon \eta }{\lambda (\epsilon )}\int ^{\tau \wedge \hat{\tau }}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)\Big \}. \end{aligned}$$

Notice that for any \(p>1\)

$$\begin{aligned} \bigg \{\exp \Big \{\frac{p\epsilon \eta }{\lambda (\epsilon )}\int ^{\tau \wedge \hat{\tau }\wedge t}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds) -\epsilon ^{-2}\int ^{\tau \wedge \hat{\tau }\wedge t}_{\iota _1} \big (e^{\frac{p\epsilon \eta }{\lambda (\epsilon )}\gamma (s)}-1-\frac{p\epsilon \eta }{\lambda (\epsilon )}\gamma (s)\big )ds\Big \}, t\ge 0\bigg \} \end{aligned}$$

is an exponential martingale. Therefore, by Hölder’s inequality, for \(\frac{1}{p}+\frac{1}{q}=1\) with \(p>0\), \(q>0\),

$$\begin{aligned}&{\mathbb {E}}\exp \Big \{\frac{\epsilon \eta }{\lambda (\epsilon )}\int ^{\tau \wedge \hat{\tau }}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)\Big \}\\&\quad \le {\mathbb {E}}^{\frac{1}{q}}\exp \Big \{\frac{q\epsilon ^{-2}}{p}\int ^{\tau \wedge \hat{\tau }}_{\iota _1} \big (e^{\frac{p\epsilon \eta }{\lambda (\epsilon )}\gamma (s)}-1-\frac{p\epsilon \eta }{\lambda (\epsilon )}\gamma (s)\big )ds\Big \}\\&\quad \le \exp \left\{ \frac{1}{2}\lambda ^{-2}(\epsilon )p\eta ^2\rho ^2(\iota _2-\iota _1)e^{\epsilon \lambda ^{-1}(\epsilon )p\eta \rho }\right\} , \end{aligned}$$

where the last inequality is derived from the fact that

$$\begin{aligned} e^x-1-x\le \frac{x^2}{2}e^{|x|},\quad x\in \mathbb {R}. \end{aligned}$$

Consequently, it holds that

$$\begin{aligned}&P\Bigg (\sup _{t\in [\iota _1,\tau ]}\lambda (\epsilon )\epsilon \int ^{t}_{\iota _1}\gamma (s)\tilde{N}^{\epsilon ^{-2}}(ds)>a\Bigg )\\&\quad \le \exp \left\{ -\lambda ^{-2}(\epsilon )\Big (\eta a-\frac{1}{2}p\eta ^2\rho ^2(\iota _2-\iota _1)e^{\epsilon \lambda ^{-1}(\epsilon )p\eta \rho }\Big )\right\} . \end{aligned}$$

Letting \(p\rightarrow 1\), we can get (A11) and complete the proof of this proposition. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, J., Lihu, X. & Qingshan, Y. Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions. J Theor Probab (2024). https://doi.org/10.1007/s10959-024-01354-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10959-024-01354-0

Keywords

Mathematics Subject Classification (2020)

Navigation