Log in

High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Evaluation of brain lesions using magnetic resonance imaging (MRI) provides information that is critical for accurate diagnosis, prognosis, therapeutic intervention and monitoring response. Conventional contrast-enhanced MR neuroimaging using gadolinium (Gd) contrast agents primarily depicts disruption of the blood-brain barrier, demonstrating location and extent of disease, and also the morphological details at the lesion site. However, conventional imaging results do not always accurately predict tumour aggressiveness. Advanced functional MRI techniques such as dynamic contrast-enhanced perfusion-weighted imaging utilise contrast agents to convey physiological information regarding the haemodynamics and neoangiogenic status of the lesion that is often complementary to anatomical information obtained through conventional imaging. Most of the Gd contrast agents available have similar T1 and T2 relaxivities, and thus their contrast-enhancing capabilities are comparable. Exceptions are gadobenate-dimeglumine, Gd-EOB-DTPA, Gadobutrol and gadofosveset, which, owing to their transient-protein-binding capability, possess almost twice (and more) the T1 and T2 relaxivities as other agents at all magnetic field strengths. Numerous comparative studies have demonstrated the advantages of the increased relaxivity in terms of enhanced image contrast, image quality and diagnostic confidence. Here we summarise the benefits of higher relaxivity for the most common neuroimaging applications including MRI, perfusion-weighted imaging and MRA for evaluation of brain tumours, cerebrovascular disease and other CNS lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Cavagna FM, Maggioni F, Castelli PM, Dapra M, Imperatori LG, Lorusso V, Jenkins BG (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  CAS  PubMed  Google Scholar 

  2. Giesel FL, von Tengg-Kobligk H, Wilkinson ID, Siegler P, von der Lieth CW, Frank M, Lodemann KP, Essig M (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents. Invest Radiol 41:222–228

    Article  CAS  PubMed  Google Scholar 

  3. de Haen C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L (1999) Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl 1):S161–S168

    PubMed  Google Scholar 

  4. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F (2006) Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–221

    Article  PubMed  Google Scholar 

  5. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  6. Goyen M (2008) Gadofosveset-enhanced magnetic resonance angiography. Vasc Health Risk Manag 4:1–9

    Article  CAS  PubMed  Google Scholar 

  7. Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6:43–52

    Article  PubMed  Google Scholar 

  8. Bleicher AG, Kanal E (2008) A serial dilution study of gadolinium-based MR imaging contrast agents. AJNR Am J Neuroradiol 29:668–673

    Article  CAS  PubMed  Google Scholar 

  9. Yuh WT, Engelken JD, Muhonen MG, Mayr NA, Fisher DJ, Ehrhardt JC (1992) Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases. AJNR Am J Neuroradiol 13:335–345

    CAS  PubMed  Google Scholar 

  10. Yuh WT, Fisher DJ, Engelken JD, Greene GM, Sato Y, Ryals TJ, Crain MR, Ehrhardt JC (1991) MR evaluation of CNS tumors: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology 180:485–491

    CAS  PubMed  Google Scholar 

  11. Haustein J, Laniado M, Niendorf HP, Louton T, Beck W, Planitzer J, Schoffel M, Reiser M, Kaiser W, Schorner W (1993) Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology 186:855–860

    CAS  PubMed  Google Scholar 

  12. Yuh WT, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR Am J Neuroradiol 15:1037–1051

    CAS  PubMed  Google Scholar 

  13. Runge VM, Kirsch JE, Burke VJ, Price AC, Nelson KL, Thomas GS, Dean BL, Lee C (1992) High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging 2:9–18

    Article  CAS  PubMed  Google Scholar 

  14. Sze G, Johnson C, Kawamura Y, Goldberg SN, Lange R, Friedland RJ, Wolf RJ (1998) Comparison of single-and triple-dose contrast material in the MR screening of brain metastases. AJNR Am J Neuroradiol 19:821–828

    CAS  PubMed  Google Scholar 

  15. Schneider G, Kirchin MA, Pirovano G, Colosimo C, Ruscalleda J, Korves M, Salerio I, La NA, Spinazzi A (2001) Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 14:525–539

    Article  CAS  PubMed  Google Scholar 

  16. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188:586–592

    Article  PubMed  Google Scholar 

  17. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  18. Kanal E, Broome DR, Martin DR, Thomsen HS (2008) Response to the FDA’s May 23, 2007, nephrogenic systemic fibrosis update. Radiology 246:11–14

    Article  PubMed  Google Scholar 

  19. Baleriaux D, Colosimo C, Ruscalleda J, Korves M, Schneider G, Bohndorf K, Bongartz G, van Buchem MA, Reiser M, Sartor K, Bourne MW, Parizel PM, Cherryman GR, Salerio I, La NA, Pirovano G, Kirchin MA, Spinazzi A (2002) Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiology 44:191–203

    Article  CAS  PubMed  Google Scholar 

  20. Colosimo C, Ruscalleda J, Korves M, La FR, Wool C, Pianezzola P, Kirchin MA (2001) Detection of intracranial metastases: a multicenter, intrapatient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest Radiol 36:72–81

    Article  CAS  PubMed  Google Scholar 

  21. Knopp MV, Runge VM, Essig M, Hartman M, Jansen O, Kirchin MA, Moeller A, Seeberg AH, Lodemann KP (2004) Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology 230:55–64

    Article  PubMed  Google Scholar 

  22. Colosimo C, Knopp MV, Barreau X, Gerardin E, Kirchin MA, Guezenoc F, Lodemann KP (2004) A comparison of Gd-BOPTA and Gd-DOTA for contrast-enhanced MRI of intracranial tumours. Neuroradiology 46:655–665

    Article  CAS  PubMed  Google Scholar 

  23. Maravilla KR, Maldjian JA, Schmalfuss IM, Kuhn MJ, Bowen BC, Wippold FJ, Runge VM, Knopp MV, Kremer S, Wolansky LJ, Anzalone N, Essig M, Gustafsson L (2006) Contrast enhancement of central nervous system lesions: multicenter intraindividual crossover comparative study of two MR contrast agents. Radiology 240:389–400

    Article  PubMed  Google Scholar 

  24. Kuhn MJ, Picozzi P, Maldjian JA, Schmalfuss IM, Maravilla KR, Bowen BC, Wippold FJ, Runge VM, Knopp MV, Wolansky LJ, Gustafsson L, Essig M, Anzalone N (2007) Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention. J Neurosurg 106:557–566

    Article  CAS  PubMed  Google Scholar 

  25. Rumboldt Z, Rowley HA, Steinberg F, Maldjian JA, Ruscalleda J, Gustafsson L, Bastianello S (2009) Multicenter, double-blind, randomized, intra-individual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine in MRI of brain tumors at 3 Tesla. J Magn Reson Imaging 29:760–767

    Article  PubMed  Google Scholar 

  26. Rowley HA, Scialfa G, Gao PY, Maldjian JA, Hassell D, Kuhn MJ, Wippold FJ, Gallucci M, Bowen BC, Schmalfuss IM, Ruscalleda J, Bastianello S, Colosimo C (2008) Contrast-enhanced MR imaging of brain lesions: a large-scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. AJNR Am J Neuroradiol 29:1684–1691

    Article  CAS  PubMed  Google Scholar 

  27. Goyen M, Edelman M, Perreault P, O’Riordan E, Bertoni H, Taylor J, Siragusa D, Sharafuddin M, Mohler ER III, Breger R, Yucel EK, Shamsi K, Weisskoff RM (2005) MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236:825–833

    Article  PubMed  Google Scholar 

  28. Rapp JH, Wolff SD, Quinn SF, Soto JA, Meranze SG, Muluk S, Blebea J, Johnson SP, Rofsky NM, Duerinckx A, Foster GS, Kent KC, Moneta G, Middlebrook MR, Narra VR, Toombs BD, Pollak J, Yucel EK, Shamsi K, Weisskoff RM (2005) Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography-multicenter comparative phase III study. Radiology 236:71–78

    Article  PubMed  Google Scholar 

  29. Essig M, Tartaro A, Tartaglione T, Pirovano G, Kirchin MA, Spinazzi A (2006) Enhancing lesions of the brain: intraindividual crossover comparison of contrast enhancement after gadobenate dimeglumine versus established gadolinium comparators. Acad Radiol 13:744–751

    Article  PubMed  Google Scholar 

  30. Picozzi P, Kirchin MA (2007) Improving lesion detection and visualization: implications for neurosurgical planning and follow-up. Neuroradiology 49(Suppl 1):S27–S34

    Article  PubMed  Google Scholar 

  31. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  PubMed  Google Scholar 

  32. Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT, Giesel FL (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17:89–106

    Article  PubMed  Google Scholar 

  33. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results Magn Reson Med 36:726–736

    CAS  Google Scholar 

  34. Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, Wannenmacher M (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58

    Article  CAS  PubMed  Google Scholar 

  35. Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41:256–263

    Article  CAS  PubMed  Google Scholar 

  36. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    CAS  PubMed  Google Scholar 

  37. Rizzo L, Crasto SG, Moruno PG, Cassoni P, Ruda R, Boccaletti R, Brosio M, De LR, Fava C (2009) Role of diffusion-and perfusion-weighted MR imaging for brain tumour characterisation. Radiol Med 114:645–659

    Article  CAS  PubMed  Google Scholar 

  38. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  39. Cotton F, Hermier M (2006) The advantage of high relaxivity contrast agents in brain perfusion. Eur Radiol 16(Suppl 7):M16–M26

    PubMed  Google Scholar 

  40. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh M, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48:150–159

    Article  CAS  PubMed  Google Scholar 

  41. Tombach B, Benner T, Reimer P, Schuierer G, Fallenberg EM, Geens V, Wels T, Sorensen AG (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/l gadobutrol. Radiology 226:880–888

    Article  PubMed  Google Scholar 

  42. Rosen BR, Belliveau JW, Chien D (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 5:263–281

    CAS  PubMed  Google Scholar 

  43. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  PubMed  Google Scholar 

  44. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    Article  CAS  PubMed  Google Scholar 

  45. Pomper MG, Port JD (2000) New techniques in MR imaging of brain tumors. Magn Reson Imaging Clin N Am 8:691–713

    CAS  PubMed  Google Scholar 

  46. Lev MH, Rosen BR (1999) Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 9:309–331

    CAS  PubMed  Google Scholar 

  47. Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7:528–537

    Article  CAS  PubMed  Google Scholar 

  48. Thilmann O, Larsson EM, Bjorkman-Burtscher IM, Stahlberg F, Wirestam R (2005) Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T. J Magn Reson Imaging 22:597–604

    Article  PubMed  Google Scholar 

  49. Essig M (2003) Clinical experience with MultiHance in CNS imaging. Eur Radiol 13(Suppl 3):N3–10

    Article  PubMed  Google Scholar 

  50. Giesel FL, Mehndiratta A, Risse F, Rius M, Zechmann CM, von Tengg-Kobligk H, Gerigk L, Kauczor HU, Politi M, Essig M, Griffiths PD, Wilkinson ID (2009) Intraindividual comparison between gadopentetate dimeglumine and gadobutrol for magnetic resonance perfusion in normal brain and intracranial tumors at 3 Tesla. Acta Radiol 50:521–530

    Article  PubMed  Google Scholar 

  51. Manka C, Traber F, Gieseke J, Schild HH, Kuhl CK (2005) Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 234:869–877

    Article  PubMed  Google Scholar 

  52. Catalano C, Pediconi F, Nardis P, Roselli A, Cavacece M, Bertoletti L, Passariello R (2004) MR angiography with MultiHance for imaging the supra-aortic vessels. Eur Radiol 14(Suppl 7):O45–O51

    PubMed  Google Scholar 

  53. Essig M (2005) Gadobenate dimeglumine (MultiHance) in MR imaging of the CNS: studies to assess the benefits of a high relaxivity contrast agent. Acad Radiol 12(Suppl 1):S23–S27

    Article  PubMed  Google Scholar 

  54. Knopp MV, Schoenberg SO, Rehm C, Floemer F, von Tengg-Kobligk H, Bock M, Hentrich HR (2002) Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol 37:706–715

    Article  CAS  PubMed  Google Scholar 

  55. Pediconi F, Fraioli F, Catalano C, Napoli A, Danti M, Francone M, Venditti F, Nardis P, Passariello R (2003) Gadobenate dimeglumine (Gd-DTPA) vs gadopentetate dimeglumine (Gd-BOPTA) for contrast-enhanced magnetic resonance angiography (MRA): improvement in intravascular signal intensity and contrast to noise ratio. Radiol Med 106:87–93

    PubMed  Google Scholar 

  56. Bueltmann E, Erb G, Kirchin MA, Klose U, Naegele T (2008) Intra-individual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for contrast-enhanced magnetic resonance angiography of the supraaortic vessels at 3 Tesla. Invest Radiol 43:695–702

    Article  CAS  PubMed  Google Scholar 

  57. Wyttenbach R, Gianella S, Alerci M, Braghetti A, Cozzi L, Gallino A (2003) Prospective blinded evaluation of Gd-. Radiology 227:261–269

    Article  PubMed  Google Scholar 

  58. Tombach B, Heindel W (2002) Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 12:1550–1556

    Article  PubMed  Google Scholar 

  59. Goyen M, Lauenstein TC, Herborn CU, Debatin JF, Bosk S, Ruehm SG (2001) 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 14:602–607

    Article  CAS  PubMed  Google Scholar 

  60. Herborn CU, Lauenstein TC, Ruehm SG, Bosk S, Debatin JF, Goyen M (2003) Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol 38:27–33

    Article  CAS  PubMed  Google Scholar 

  61. Fink C, Puderbach M, Ley S, Plathow C, Bock M, Zuna I, Kauczor HU (2004) Contrast-enhanced three-dimensional pulmonary perfusion magnetic resonance imaging: intraindividual comparison of 1.0 M gadobutrol and 0.5 M Gd-DTPA at three dose levels. Invest Radiol 39:143–148

    Article  PubMed  Google Scholar 

  62. Fink C, Puderbach M, Ley S, Risse F, Kuder TA, Bock M, Thaler J, Plathow C, Kauczor HU (2005) Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso. J Magn Reson Imaging 22:286–290

    Article  PubMed  Google Scholar 

  63. von Tengg-Kobligk H, Floemer F, Knopp MV (2003) Multiphasic MR angiography as an intra-individual comparison between the contrast agents Gd-DTPA, Gd-BOPTA, and Gd-BT-DO3A. Radiologe 43:171–178

    Article  Google Scholar 

  64. Dong Q, Hurst DR, Weinmann HJ, Chenevert TL, Londy FJ, Prince MR (1998) Magnetic resonance angiography with gadomer-17. An animal study original investigation. Invest Radiol 33:699–708

    CAS  Google Scholar 

  65. Tombach B, Bohndorf K, Brodtrager W, Claussen CD, Duber C, Galanski M, Grabbe E, Gortenuti G, Kuhn M, Gross-Fengels W, Hammerstingl R, Happel B, Heinz-Peer G, Jung G, Kittner T, Lagalla R, Lengsfeld P, Loose R, Oyen RH, Pavlica P, Pering C, Pozzi-Mucelli R, Persigehl T, Reimer P, Renken NS, Richter GM, Rummeny EJ, Schafer F, Szczerbo-Trojanowska M, Urbanik A, Vogl TJ, Hajek P (2008) Comparison of 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: results of a multicenter, single-blind, interindividual, randomized clinical phase III trial. Eur Radiol 18:2610–2619

    Article  PubMed  Google Scholar 

  66. Fink C, Goyen M, Lotz J (2007) Magnetic resonance angiography with blood-pool contrast agents: future applications. Eur Radiol 17(Suppl 2):B38–B44

    PubMed  Google Scholar 

  67. Essig M, Nikolaou K, Meaney JF (2007) Magnetic resonance angiography of the head and neck vessels. Eur Radiol 17(Suppl 2):B30–B37

    PubMed  Google Scholar 

  68. Meaney JF, Goyen M (2007) Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 17(Suppl 2):B2–B6

    PubMed  Google Scholar 

  69. Reisinger C, Gluecker T, Jacob AL, Bongartz G, Bilecen D (2009) Dynamic magnetic resonance angiography of the arteries of the hand. A comparison between an extracellular and an intravascular contrast agent. Eur Radiol 19:495–502

    Google Scholar 

  70. Klessen C, Hein PA, Huppertz A, Voth M, Wagner M, Elgeti T, Kroll H, Hamm B, Taupitz M, Asbach P (2007) First-pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: comparison to gadopentetate dimeglumine. Invest Radiol 42:659–664

    Article  PubMed  Google Scholar 

  71. Iezzi R, Soulez G, Thurnher S, Schneider G, Kirchin MA, Shen N, Pirovano G, Spinazzi A (2009) Contrast-enhanced MRA of the renal and aorto-iliac-femoral arteries: Comparison of gadobenate dimeglumine and gadofosveset trisodium. Eur J Radiol. doi:10.1016/j.ejrad.2009.07.020

    Google Scholar 

  72. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11:423–429

    CAS  PubMed  Google Scholar 

  73. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241

    Article  CAS  PubMed  Google Scholar 

  74. Ge Y (2006) Multiple sclerosis: the role of MR imaging. AJNR Am J Neuroradiol 27:1165–1176

    CAS  PubMed  Google Scholar 

  75. Theberge J (2008) Perfusion magnetic resonance imaging in psychiatry. Top Magn Reson Imaging 19:111–130

    Article  PubMed  Google Scholar 

  76. Caravan P, Farrar CT, Frullano L, Uppal R (2009) Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T1 contrast agents. Contrast Media Mol Imaging 4:89–100

    Article  CAS  PubMed  Google Scholar 

  77. Fries P, Runge VM, Bucker A, Schurholz H, Reith W, Robert P, Jackson C, Lanz T, Schneider G (2009) Brain tumor enhancement in magnetic resonance imaging at 3 Tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular Gd-chelate in a rat brain tumor model. Invest Radiol 44:200–206

    Article  PubMed  Google Scholar 

  78. Caravan P (2009) Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res 42:851–862

    Article  CAS  PubMed  Google Scholar 

  79. Barrett T, Brechbiel M, Bernardo M, Choyke PL (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Essig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesel, F.L., Mehndiratta, A. & Essig, M. High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review. Eur Radiol 20, 2461–2474 (2010). https://doi.org/10.1007/s00330-010-1805-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1805-8

Keywords

Navigation