Log in

In silico studies toward the recognition of fluoride ion by novel bicyclic diborane receptors and tuning through remote substituent effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Derivatives of 5,6-diborylbicyclo[2.1.1]hexane have been presented as the novel bicyclic diborane receptors for the recognition of fluoride ion. The MP2/6-311+G**//B3LYP/6-311+G** calculated results suggest for much higher fluoride ion affinity for these studied receptors. Dicyano derivative of 5,6-diborylbicyclo[2.1.1]hexane (7) shows ~25.0 kcal/mol higher fluoride ion affinity than the prototype 1,8-naphthalenediylbis(dimethylborane) (1). Further, it has been shown that the affinity of these receptors can be tuned through remote substituent effect. The molecular electrostatic isopotential surface calculations reveal the change in the value of V S,max on boron center due to remote substitutions. Quantum theory of atoms in molecule analyses shows that the binding of F to the boron centers of the receptor molecules is non-covalent in nature. Incorporation of chromogenic units at the remote positions also influences the affinity of receptors toward analytes. Further, the calculated higher fluoride ion affinities of these receptors in the aqueous medium suggest that they can be promising candidates to function as F ion receptors in water medium also. The Cl and Br ion affinities of these receptors have also been discussed. The designed bicyclo[2.1.1]hexane receptors are synthetically achievable as similar systems have been reported (Wiberg et al. in J Am Chem Soc 83:3998, 1961; Martínez et al. in Tetrahedron Asym 4:2333, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. Jouvin MH, De Vernejoul MC, Druet P (1987) Am J Kidney Dis 10:136–139

    Google Scholar 

  2. Wade CR, Broomsgrove AEJ, Aldridge S, Gabbai FP (2010) Chem Rev 110:3958–3984 and references therein

    Google Scholar 

  3. Gale PA (2010) Chem Soc Rev 39:3746–3771 and references therein

    Google Scholar 

  4. Cametti M, Rissanen K (2009) Chem Commun 2809–2829 and references therein

  5. Zhang M, Li M, Li F, Cheng Y, Zhang J, Yi T, Huang C (2008) Dyes Pigm 77:408–414

    Article  CAS  Google Scholar 

  6. Werner F, Schneider H-J (2000) Helv Chim Acta 83:465–478

    Article  CAS  Google Scholar 

  7. Gale PA, Camiolo S, Chapman CP, Light ME, Hursthouse MB (2001) Tetrahedron Lett 42:5095–5097

    Article  CAS  Google Scholar 

  8. Dudič M, Lhoták P, Stibor I, Lang K, Prošková P (2003) Org Lett 5:149–152

    Article  Google Scholar 

  9. Bucher C, Zimmerman RS, Lynch V, Sessler JL (2001) J Am Chem Soc 123:9716–9717

    Article  CAS  Google Scholar 

  10. Woods CJ, Camiolo S, Light ME, Coles SJ, Hursthouse MB, King MA, Gale PA, Essex JW (2002) J Am Chem Soc 124:8644–8652

    Article  CAS  Google Scholar 

  11. Sasaki S-i, Mizuno M, Naemura K, Tobe Y (2000) J Org Chem 65:275–283

    Article  CAS  Google Scholar 

  12. Galbraith E, James TD (2010) Chem Soc Rev 39:3831–3842 and references therein

    Google Scholar 

  13. Guo Z, Shin I, Yoon J (2012) Chem Commun 48:5956–5967

    Article  CAS  Google Scholar 

  14. Katz HE (1985) J Org Chem 50:5027–5032

    Article  CAS  Google Scholar 

  15. Katz HE (1986) J Am Chem Soc 108:7640–7645

    Article  CAS  Google Scholar 

  16. Dusmund C, Sandanayake K, Shinkai S (1995) J Chem Soc Chem Commun 333–334

  17. Bresner C, Aldridge S, Fallis I, Jones AC, Ooi L-L (2005) Angew Chem Int Ed 44:3606–3609

    Article  CAS  Google Scholar 

  18. Day JK, Bresner C, Coombs ND, Fallis IA, Ooi L-L, Aldridge S (2008) Inorg Chem 47:793–804

    Article  CAS  Google Scholar 

  19. Kubo Y, Yamamoto M, Ikeda M, Takeuchi M, Shinkai S, Yamaguchi S, Tamao K (2003) Angew Chem Int Ed 42:2036–2040

    Article  CAS  Google Scholar 

  20. Timoshkin AY, Frenking G (2008) Organometallics 27:371–380

    Article  CAS  Google Scholar 

  21. Melaïmi M, Sole S, Chiu C-W, Wang H, Gabbaï FP (2006) Inorg Chem 45:8136–8143

    Article  Google Scholar 

  22. Veltheer JE, Burger P, Bergman RG (1995) J Am Chem Soc 117:12478–12488

    Article  CAS  Google Scholar 

  23. Krossing I, Raabe I (2004) Chem Eur J 10:5017–5030

    Article  CAS  Google Scholar 

  24. Bresner C, Haynes C, Addy DA, Broomsgrove AEJ, Fitzpatrick P, Vidovic D, Thompson AL, Fallis IA, Aldridge S (2010) New J Chem 34:1652–1659

    Article  CAS  Google Scholar 

  25. Huh JO, Kim H, Lee KM, Lee YS, Do Y, Lee MH (2010) Chem Commun 46:1138–1140

    Article  CAS  Google Scholar 

  26. Solé S, Gabbaï FP (2004) Chem Commun 1284–1285

  27. Henderson LD, Piers WE, Irvine GJ, McDonald R (2002) Organometallics 21:340–345

    Article  CAS  Google Scholar 

  28. Metz MV, Schwartz DJ, Stern CL, Marks TJ, Nickias PN (2002) Organometallics 21:4159–4168

    Article  CAS  Google Scholar 

  29. Emslie DJM, Piers WE, Parvez M (2003) Angew Chem Int Ed 42:1252–1255

    Article  CAS  Google Scholar 

  30. Gabbaï FP (2003) Angew Chem Int Ed 42:2218–2221

    Article  Google Scholar 

  31. Lewis SP, Taylor NJ, Piers WE, Collins S (2003) J Am Chem Soc 125:14686–14687

    Article  CAS  Google Scholar 

  32. Morrison DJ, Piers WE, Parvez M (2004) Synlett 13:2429–2433

    Google Scholar 

  33. Melaimi M, Gabbaï FP (2005) Adv Organomet Chem 53:61–69

    Article  CAS  Google Scholar 

  34. Venkatasubbaiah K, Zakharov LN, Kassel WS, Rheingold AL, Jäkle F (2005) Angew Chem Int Ed 44:5428–5433

    Article  CAS  Google Scholar 

  35. Chase PA, Henderson LD, Piers WE, Parvez M, Clegg W, Elsegood MRJ (2006) Organometallics 25:349–357

    Article  CAS  Google Scholar 

  36. Venkatasubbaiah K, Nowil I, Herber RH, Jäkle F (2007) Chem Commun 2154–2156

  37. Dorsey CL, Jewula P, Hudnall TW, Hoefelmeyer JD, Taylor TJ, Honesty NR, Chiu C-W, Schulte M, Gabbaï FP (2008) Dalton Trans 4442–4450

  38. Kawachi A, Tani A, Shimada J, Yamamoto Y (2008) J Am Chem Soc 130:4222–4223

    Article  CAS  Google Scholar 

  39. Boshra R, Venkatasubbaiah K, Doshi A, Lalancette RA, Kakalis L, Jäkle F (2007) Inorg Chem 46:10174–10186

    Article  CAS  Google Scholar 

  40. Melaïmi M, Gabbaï FP (2005) J Am Chem Soc 127:9680–9681

    Article  Google Scholar 

  41. Lee MH, Gabbaï FP (2007) Inorg Chem 46:8132–8138

    Article  CAS  Google Scholar 

  42. Kim Y, Hudnall TW, Bouhadir G, Bourissou D, Gabbaï FP (2009) Chem Commun 3729–3731

  43. Hudnall TW, Kim Y-M, Bebbington MWP, Bourissou D, Gabbaï FP (2008) J Am Chem Soc 130:10890–10891

    Article  CAS  Google Scholar 

  44. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  46. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1988) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  47. Møller C, Plesset MS (1934) Phys Rev 46:618–621

    Article  Google Scholar 

  48. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  49. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  50. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  52. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct (Theochem) 464:211–226

    Article  CAS  Google Scholar 

  53. Bader RFW (1990) Atoms in molecule: a quantum theory. Oxford University Press, New York

  54. Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2, ch 7. VCH Publishers, New York

  55. Tomasi J, Bonaccorsi R, Cammi R (1990). In: Maksic R (ed) Theoretical models of chemical bonding. Springer, Berlin

  56. Pathak RK, Gadre SR (1990) J Chem Phys 93:1770–1773

    Article  CAS  Google Scholar 

  57. Scrocco E, Tomasi J (1979) Adv Quantum Chem 11:115–193

    Article  Google Scholar 

  58. Murray JS, Politzer P (1998) J Mol Struct (Theochem) 425:107–114

    Article  CAS  Google Scholar 

  59. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  60. Murray JS, Politzer P (1988) Chem Phys Lett 152:364–370

    Article  CAS  Google Scholar 

  61. Haeberlein M, Murray JS, Brinck T, Politzer P (1992) Can J Chem 70:2209–2214

    Article  CAS  Google Scholar 

  62. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS, Bulat FP (2010) J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  64. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  65. MarVin, version 5.9.4; ChemAxon: Budapest, Hungary, (2007) http://www.chemaxon.com

  66. Evers EC, Freitag WO, Kriner WA, MacDiarmid AG (1959) J Am Chem Soc 81:5106–5108

    Article  CAS  Google Scholar 

  67. Wiberg KB, Lowry BR, Colby TH (1961) J Am Chem Soc 83:3998–4006

    Article  CAS  Google Scholar 

  68. Martínez AG, Vilar ET, Barcina JO, Herrero Sdlm, Cerero MER, Hanack M, Subramanian M (1993) Tetrahedron Asymmetry 4:2333–2334

    Article  Google Scholar 

  69. Shankar R, Kolandaivel P, Senthilkumar L (2011) J Phys Org Chem 24:553–567

    Article  CAS  Google Scholar 

  70. Roberts JAS, Chen M-C, Seyam AM, Li L, Zuccaccia C, Stahl NG, Marks TJ (2007) J Am Chem Soc 129:12713–12733

    Article  CAS  Google Scholar 

  71. Singh A, Ganguly B (2007) J Phys Chem A 111:6468–6471

    Article  CAS  Google Scholar 

  72. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  73. Duke R, McCabe M, Schmitt WT, Gunnlaugsson T (2012) J Org Chem 77:3115–3126

    Article  CAS  Google Scholar 

  74. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Coord Chem Rev 250:3094–3117

    Article  CAS  Google Scholar 

  75. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry, vol 2 of Wiley series in solution chemistry. Wiley, Chichester

  76. Tiwari YB, Miller MM, Wasik SP, Martier DE (1982) J Chem Eng Data 27:451–454

    Article  Google Scholar 

Download references

Acknowledgments

MKK and DS are thankful to UGC, New Delhi, India, and BG thanks CSIR & DST, New Delhi, India, for financial support. Authors are also thankful to PAULI HPC Cluster facilities available at NCL, Pune, India. We thank the reviewer for valuable suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajit Ganguly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16635 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesharwani, M.K., Sahu, D., Desai, K. et al. In silico studies toward the recognition of fluoride ion by novel bicyclic diborane receptors and tuning through remote substituent effects. Theor Chem Acc 132, 1358 (2013). https://doi.org/10.1007/s00214-013-1358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1358-4

Keywords

Navigation